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0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping informa
for the following languages:

• Ada

• C

• C++

• COBOL

• IDL to Java

• Java to IDL

• Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that 
language mapping is aligned with.

Language Mapping Aligned with CORBA version

Ada CORBA 2.0

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1
                                 COBOL Language Mapping                               June 1999 v
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0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the 
specifications in CORBA Core and one mapping. Each additional language mappi
a separate, optional compliance point. Optional means users aren’t required to 
implement these points if they are unnecessary at their site, but if implemented, t
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindi
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed 
information about Interworking compliance, refer to the Common Object Request 
Broker: Architecture and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body of CORBA specifications is divided into core and 
component-like specifications. The structure of this manual reflects that division. 

The CORBA specifications are divided into these volumes: 

1. The Common Object Request Broker: Architecture and Specification, which 
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability , as specified in Chapters 12-16

• CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following 
stand-alone volumes:

• Mapping of OMG IDL to the Ada programming language

• Mapping of OMG IDL to the C programming language

• Mapping of OMG IDL to the C++ programming language

• Mapping of OMG IDL to the COBOL programming language

• Mapping of OMG IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of OMG IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved
the Object Management Group to become CORBA (including the Language Mapping 
specifications):

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Smalltalk CORBA 2.0

Language Mapping Aligned with CORBA version
vi                                  COBOL Language Mapping                               June 1999
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• BNR Europe Ltd.

• Defense Information Systems Agency

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• IBM Corporation

• ICL plc

• Inprise Corporation

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• Micro Focus Limited

• MITRE Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc. 

• Objective Interface Systems, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at 
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies to CORBA and/or the Language Mapping 
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
COBOL Language Mapping         References            June 1999 vii
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COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micr
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version)
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DC
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1.1 Overview

This COBOL language mapping provides the ability to access and implement COR
objects in programs written in the COBOL programming language. The mapping 
based on the definition of the ORB in The Common Object Request Broker: 
Architecture and Specification. The mapping specifies how CORBA objects (objects
defined by OMG IDL) are mapped to COBOL and how operations of mapped COR
objects are invoked from COBOL.

This chapter is separated into the following sections:

• The Mapping of OMG IDL to COBOL

• The Dynamic COBOL Mapping

• The Type Specific COBOL Mapping

“Pseudo Objects” 1-16

“Auxiliary Datatype Routines” 1-16

Part II - D ynamic COBOL Mapping

“Dynamic COBOL Mapping Fundamentals” 1-31

“Common Auxiliary Routines” 1-38
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“COBOL Object Adapter Functions” 1-43
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“Type Specific COBOL Mapping - Object Invocation” 1-53

“Memory Management” 1-56

“Handling Exceptions” 1-58

“Type Specific COBOL Server Mapping” 1-62

“Extensions to COBOL 85” 1-76
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Part I - The Mapping of OMG IDL to COBOL

1.2 Mapping IDL Types to COBOL

This section describes the mapping of OMG IDL types to COBOL. The syntax us
within this section generally conforms to the ANSI 85 COBOL standard, as define
within ANSI X3.23-1985-1995. However, there are some extensions beyond ANS
COBOL (such as the use of COBOL typedefs) that are described, but due to thei
nature are deemed to be an optional part of the mapping. 

1.2.1 Mapping of IDL Identifiers to COBOL

1.2.1.1 Scoped Names

Wherever the COBOL programmer uses a global name for an IDL type, constant
exception, or operation the COBOL global name corresponding to an IDL global n
is derived as follows:

• For IDL names being converted into COBOL identifiers or a COBOL literal: 
convert all occurrences of “::" (except the leading one) into a “-” (a hyphen) an
remove any leading hyphens. The “::” used to indicate that global scope will b
ignored.

Consider the following example:

// IDL
module Sample {

interface Example {

short op1();
long op2();
...

};
};

A COBOL group item that defines the argument lists within the Dynamic COBOL 
mapping would use scoped names, as follows:

01 SAMPLE-EXAMPLE-OP1.
....

01 SAMPLE-EXAMPLE-OP2.
....

1.2.1.2 Mapping IDL Identifiers to a COBOL Name

A COBOL name may be up to 30 characters in length and can only consist of a 
combination of letters, digits, and hyphens. The hyphen may not appear as the fi
last character.
COBOL Mapping         Mapping IDL Types to COBOL          June 1999 1-3
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Where a COBOL name is to be used, the following steps will be taken to convert
IDL identifier into a format acceptable to COBOL.

1. Replace each underscore with a hyphen.

2. Strip off any leading or trailing hyphens.

3. When an IDL identifier collides with a COBOL reserved word, insert the string
“IDL-” before the identifier.

4. If the identifier is greater than 30 characters, then truncate right to 30 characte
this will result in a duplicate name, truncate back to 27 characters and add a 
numeric suffix to make it unique.

For example, the IDL identifiers:

my_1st_operation_parameter
_another_parameter_
add
a_very_very_long_operation_parameter_number_1
a_very_very_long_operation_parameter_number_2

become COBOL identifiers:

MY-1ST-OPERATION-PARAMETER
ANOTHER-PARAMETER
IDL-ADD
A-VERY-VERY-LONG-OPERATION-PAR
A-VERY-VERY-LONG-OPERATION-001

1.2.1.3 Mapping IDL Identifiers to a COBOL Literal

A COBOL literal is a character string consisting of any allowable character in the
character set and is delimited at both ends by quotation marks (either quotes or 
apostrophes).

Where a COBOL literal is to be used, the IDL identifier can be used directly within
quotes without any truncation being necessary.

1.3 Mapping for Interfaces

1.3.1 Object References

The use of an interface type in IDL denotes an object reference. Each IDL interfa
shall be mapped directly to an opaque COBOL pointer (or when supported, the 
COBOL typedef CORBA-Object). 

The following example illustrates the COBOL mapping for an interface:

interface interface1 {
long op1(in short parm1);
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};

For COBOL interfaces are mapped to an opaque pointer type, as illustrated below

01 INTERFACE1 POINTER.

1.3.2 Object References as Arguments

IDL permits specifications in which arguments, return results, or components of 
constructed types may be object references. Consider the following example:

#include “interface1.idl” // IDL

interface interface2 {
interface1 op2();

};

The above example will result in the following COBOL declaration for the interfac

01 INTERFACE2 POINTER.
...

The following is a sample of COBOL code that may be used to call op2 using the Type 
Specific COBOL mapping.

WORKING-STORAGE SECTION.
...
01 INTERFACE1-OBJ POINTER.
01 INTERFACE2-OBJ POINTER.
01 EV TYPE CORBA-ENVIRONMENT.
...
PROCEDURE DIVISION.

...
CALL "INTERFACE2-OP2" USING

INTERFACE2-OBJ
EV

INTERFACE1-OBJ
...

1.4 Mapping for Basic Data Types

All the IDL basic data types are mapped to the most appropriate COBOL 
representation for that IDL type. The following table illustrates this mapping.
COBOL Mapping         Mapping for Basic Data Types          June 1999 1-5
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Note that the use of COBOL typedefs is an optional part of this language mappin

1.4.1 Basic Integer Types

The Basic IDL Integer data types have specific limits. The ORB will be responsible
ensuring that any values do not exceed the specified integer value ranges. If a va
outside the permitted range is detected, the ORB will raise an exception.

The mapping of long long , and unsigned long long  was made to PIC S9(18) and
PIC 9(18). This is because these are the highest integer values permitted by ANS
COBOL. If a value greater than 18 numeric digits is detected, the ORB will raise 
exception. 

1.4.2 Boolean

The COBOL mapping of boolean is mapped to a PIC 9(1) COBOL integer value an
has two COBOL conditions defined, as follows:

• a label <idl-identifier>-FALSE with a 0 value

• a label <idl-identifier>-TRUE with a 1 value

Consider the following example:

Table 1-1 Mapping for Basic Data Types

IDL Name COBOL Representation Integer Range COBOL Typedef

short PIC S9(5) BINARY -2^15   to   2^15 CORBA-short

long PIC S9(10) BINARY -2^31 to   2^31 CORBA-long

long long PIC S9(18) BINARY +/- 18 numerics CORBA-long-long

unsigned short PIC S9(05) BINARY 0 to 2^16 CORBA-unsigned-short

unsigned long PIC S9(10) BINARY 0 to 2^32 CORBA-unsigned-long

unsigned long 
long

PIC S9(18) BINARY 18 numerics CORBA-unsigned-long-
long

float COMP-1 CORBA-float

double COMP-2 CORBA-double

char PIC X CORBA-char

wchar PIC G CORBA-wchar

boolean PIC 9 CORBA-boolean

octet PIC X CORBA-octet

enum PIC S9(10) BINARY CORBA-enum
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interface Example { //IDL
boolean my_boot;
...

};

The above example will result in the following COBOL declarations:

01 EXAMPLE-MY-BOOL  PICTURE 9(1).
88 MY-BOOL-FALSE VALUE 0.
88 MY-BOOL-TRUE VALUE 1.

1.4.3 enum

The COBOL mapping of enum  is an unsigned integer capable of representing 2**3
enumerations. Each identifier in an enum has a COBOL condition defined with th
appropriate unsigned integer value conforming to the ordering constraints. 

Consider the following example:

interface Example { // IDL
enum temp{cold, warm, hot}
...

};

The above example will result in the following COBOL declarations:

01 EXAMPLE-TEMP PICTURE  9(10) BINARY.
88 TEMP-COLD VALUE 0.
88 TEMP-WARM VALUE 1.
88 TEMP-HOT  VALUE 2.

COBOL code that would use this simple example is as follows:

EVALUATE TRUE
WHEN TEMP-COLD OF EXAMPLE-TEMP

...
WHEN TEMP-WARM OF EXAMPLE-TEMP

...
WHEN TEMP-HOT OF EXAMPLE-TEMP

...
END-EVALUATE

1.5 Mapping for any Types

The IDL any type permits the specification of values that can express any IDL typ

• It is mapped to an opaque type pointed to by a COBOL POINTER.

• The contents of the any  type cannot be accessed directly.

• The auxiliary functions ANYGET, ANYSET, and ANYFREE are provided to 
manipulate the any data.
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• The auxiliary functions TYPEGET and TYPESET are provided to manipulate th
type of an any. 

1.5.1 any Mapping

Consider the following example:

interface Example { //IDL
any my_any;
...

};

The above example will result in the following COBOL declarations:

01 EXAMPLE-MY-ANY USAGE POINTER.

1.5.2 any Manipulation

1.5.2.1 Client side any handling

Within clients invoking an interface operation:

• For each IN and INOUT any:

• TYPESET is first used to specify the type within the any.

• ANYSET is then used to insert the data into the any.

• For each OUT and RETURN any:

• No initialization is required.

Within clients receiving the results of an invocation of an interface operation:

• For each IN any:

• No processing is required, the ORB automatically releases the contents of th

• For each INOUT, OUT, and RETURN any:

• TYPEGET is first used to get the type of the data within the any.

• ANYGET is then used to get the data from the any.

• ANYFREE should be used to release the any when it is no longer required.

1.5.2.2 Object implementation any handling

Within object implementations receiving an inbound request from a client:

• For each IN and INOUT:

• TYPEGET is first used to get the type of the data within the any.

• ANYGET is then used to get the data from the any.

• For each OUT and RETURN any:

• No processing is required.
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Within object implementations sending a response back to clients:

• For each IN any:

• No processing is required.

• Once control has been returned to the ORB, the ORB will release the conten
the any.

• For each INOUT, OUT and RETURN any:

• TYPESET is first used to specify the type within the any.

• ANYSET is then used to insert the data into the any.

• Once control has been returned to the ORB, the contents of the any will be 
transmitted back to the client and then automatically released by the ORB.

1.6 Mapping for Fixed Types

For COBOL, the IDL fixed type is mapped to the native fixed-point decimal type. 
Consider the following example:

Interface example { //IDL
attribute fixed<8,2> salary;
attribute fixed<4,-6> millions;
attribute fixed<2, 4> small;

The above example will result in the following COBOL declarations:

01 EXAMPLE-SALARY PICTURE S9(06) V9(02) PACKED-DECIMAL.
01 EXAMPLE-MILLIONS PICTURE S9(04) P(06) PACKED-DECIMAL.
01 EXAMPLE-SMALL PICTURE VPP99 PACKED-DECIMAL.

Note – ANSI 85 COBOL limits numeric data items to a maximum of 18 digits; and t
IDL fixed type specifies support for up to 31 digits. If the IDL definition passes a 
value to COBOL of more than 18 digits, the ORB will raise an exception. Passing 
from COBOL to a fixed type with greater than 18 digits results in zero fill of the 
excess most significant digits. 

1.7 Mapping for Struct Types

IDL structures map directly onto COBOL group items. Consider the following 
example:

Interface example { //IDL
struct test {

long member1, member2;
boolean  member3;

};

...

};
COBOL Mapping         Mapping for Fixed Types          June 1999 1-9
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The above example will result in the following COBOL declarations:

01 EXAMPLE-TEST.
03 MEMBER1 PICTURE S9 (10) BINARY.
03 MEMBER2 PICTURE S9 (10) BINARY.
03 MEMBER3 PICTURE 9.

88 MEMBER3-FALSE VALUE 0.
88 MEMBER3-TRUE VALUE 1.

1.8 Mapping for Union Types

IDL discriminated Unions are mapped onto COBOL group items with the 
REDEFINES clause. Consider the following example:

Interface example { //IDL
union test switch(short){

case 1: char case_1;
case 2: double case_2;
default long default_case;

} test;

...

};

The above example will result in the following COBOL declarations:

01 EXAMPLE-TEST.
03 D PICTURE S9 (05) BINARY.
03 U.

05 CASE-2 COMPUTATIONAL-2.
03 FILLER REDEFINES U.

05 DEFAULT-CASE PICTURE S9(10) BINARY.
03 FILLER REDEFINES U.

05 CASE-1 PICTURE X.

The union discriminator in the group item is always referred to as D. The union items 
are contained within the group item referred to as U. Reference to union elements is 
done using the EVALUATE statement to test the discriminator. 

EVALUATE D OF EXAMPLE-TEST
WHEN 1

DISPLAY "CHAR VALUE IS" CASE-1 OF EXAMPLE-TEST
WHEN 2

DISPLAY "LONG VALUE IS" CASE-2 OF EXAMPLE-TEST
WHEN OTHER

DISPLAY "DOUBLE VALUE IS"
DEFAULT-CASE OF EXAMPLE-TEST

END-EVALUATE
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Note – The ANSI 85 COBOL REDEFINES clause can only be used to specify a 
redefinition whose actual storage is either the same size or smaller than the area
redefined. As a result, the union  elements need to be sorted by size from largest to
smallest within the generated COBOL structure (as illustrated within the above 
example).

1.9 Mapping for Sequence Types

The IDL data type sequence permits passing of bounded and unbounded arrays 
between objects. The following illustrates a bounded sequence of 8 longs, followe
an unbounded sequence of any number of longs:

sequence<long,8> vec8
sequence>long> vec

In COBOL, bounded and unbounded sequences are represented by a COBOL gr
item:

• The group item label is <interface-name>-<idl-identifier>.

• It will contain one instance of the type with the label <idl-identifier>.

• It will contain an opaque pointer to the sequence with the label <idl-sequence>
SEQ.

The contents of the sequence type <idl-sequence>-SEQ cannot be accessed dire

The auxiliary functions SEQALLOC, SEQGET, SEQSET, SEQLEN, SEQMAX, an
SEQFREE are provided to manipulate the sequence data within the opaque type

1.9.1 Sequence Mapping

The preceding IDL sequences would be mapped to the following structures, each
which contain one instance of the type and the opaque sequence itself. 

01 EXAMPLE-VEC8.
03 VEC8 PIC S9(10) BINARY.
03 VEC8-SEQ USAGE POINTER.

01 EXAMPLE-VEC.
03 VEC PIC S9(10) BINARY.
03 VEC-SEQ USAGE POINTER.

1.9.2 Sequence Manipulation

1.9.2.1 Client side sequence handling

Within clients invoking an interface operation:
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• For each IN and INOUT sequence:

• SEQALLOC is first used to initialize the sequence.

• SEQSET is then used to insert each sequence element in turn.

• For each OUT and RETURN sequence:

• No initialization is required.

Within clients receiving the results of an invocation of an interface operation:

• For each IN sequence:

• No processing is required, the ORB will automatically release the contents of
sequence.

• For each INOUT, OUT, and RETURN sequence:

• SEQLEN is used to get the number of elements in the sequence.

• SEQGET is then used to get each of the elements in turn.

• SEQFREE should be used to release the sequence when it is no longer req

1.9.2.2 Object implementation sequence handling

Within object implementations receiving an inbound request from a client:

• For each IN and INOUT sequence:

• SEQLEN is used to get the number of elements in the sequence.

• SEQGET is then used to get each of the elements in turn.

• For each OUT and RETURN sequence:

• No processing is required.

Within object implementations sending a response back to clients:

• For each INOUT, OUT and RETURN sequence:

• SEQALLOC is first used to initialize the sequence.

• SEQSET is then used to insert each sequence element in turn.

• Once control has been returned to the ORB, the contents of the sequence w
transmitted back to the client and then automatically released by the ORB.

1.9.2.3 Nested Sequences

The type specified within a sequence may be another sequence. 

• Nested sequences will result in an additional opaque sequence type within the
sequence group item.

• Each label of a nested opaque sequence will have a -SEQ suffix.

• SEQFREE will release all nested sequences within a sequence. 

Consider the following example:
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Interface example {
attribute sequence<sequence<sequence<long>>>nest;

};

The above example will result in the following COBOL declarations:

01 EXAMPLE-NEST.
03 NEST PICTURE S9(10) BINARY.
03 NEST-SEQ USAGE POINTER.
03 NEST-SEQ-SEQ USAGE POINTER.
03 NEST-SEQ-SEQ-SEQ USAGE POINTER.

1.10 Mapping for Strings

In IDL, there are two kinds of string data types - bounded strings and unbounded
strings:

string<8> a_bounded_string
string an_unbounded_string

In COBOL, bounded and unbounded strings are represented differently.

• Bounded strings are represented by a PIC X(n) data item, where n is the bounded 
length of the string. 

• Unbounded strings are represented by a pointer.

The auxiliary functions STRGET, STRSET, STRSETP, STRFREE, and STRLEN a
provided to manipulate unbounded strings. 

1.10.1 Bounded String Mapping

Bounded IDL strings are mapped directly to a COBOL PIC X of the specified IDL
length. The ORB will be totally responsible for handling the null byte, as required
Inbound strings will have the null byte automatically stripped off by the ORB and 
outbound strings will automatically have a null byte appended by the ORB.

Consider the following IDL declarations:

Interface example {
attribute string<10> string_1;

};

In COBOL, this is mapped directly to:

01 EXAMPLE-STRING-1 PIC X(10).

1.10.2 Unbounded String Mapping

An unbounded IDL string is mapped to a pointer that is manipulated using the 
STRGET and STRPUT auxiliary functions.
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Consider the following IDL declarations:

Interface example {
attribute string string_2;

};

In COBOL, this is represented as:

01 EXAMPLE-STRING-2 POINTER.

1.10.2.1 Client Side Unbounded String Handling

Within clients invoking an interface operation:

• For each IN and INOUT unbounded string:

• STRSET (or STRSETP) is used to create the unbounded string.

• For each OUT and RETURN unbounded string:

• No initialization is required.

Within clients receiving the results of an invocation of an interface operation:

• For each IN unbounded string:

• No processing is required, the ORB will automatically release the contents of
unbounded string.

• For each INOUT, OUT, and RETURN unbounded string:

• STRSET (or STRSETP) is used to create the unbounded string.

• STRFREE should be used to release the unbounded string when it is no lon
required.

1.10.2.2 Object Implementation Unbounded String Handling

Within object implementations receiving an inbound required from a client:

• For each IN and INOUT unbounded string:

• STRGET is used to extract the contents of the unbounded string.

• For each OUT and RETURN unbounded string:

• No processing is required.

Within object implementations sending a response back to clients:

• For each IN unbounded string:

• No processing is required.

• Once control has been returned to the ORB, the contents of the unbounded 
will be automatically released.

• For each INOUT, OUT, and RETURN unbounded string:

• STRSET (or STRSETP) is used to create the unbounded string.

• Once control has been returned to the ORB, the contents of the unbounded 
will be transmitted back to the client and then automatically released by the O
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1.10.3 Wstring Mapping

The mapping for wstring is similar to the mapping for string, but requires DBCS 
support from the COBOL compiler.

A PICTURE G instead of a PICTURE X data item represents the COBOL data ite

Instead of calling STRGET and STRSET to access unbounded strings, the auxilia
functions WSTRGET and WSTRSET should be used. The argument signatures fo
these functions are equivalent to their string counterparts.

1.11 Mapping for Arrays

IDL arrays map to the COBOL OCCURS clause, as follows:

• The top level item will take the name <interface-name>-<idl-identifier>.

• Successive levels going down will be named <idl-interface>-<numeric>.

• The actual item itself will be named <idl-identifier>.

For example, given the following IDL definition:

Interface example {
attribute short ShortArray[2][3][4][5];

};

The COBOL mapping will generate the following:

01 EXAMPLE-SHORTARRAY.
03 SHORTARRAY-1 OCCURS 2.
 05 SHORTARRAY-2 OCCURS 3.

07 SHORTARRAY-3 OCCURS 4.
09 SHORTARRAY-4 OCCURS 5.

11 SHORTARRAY PICTURE S9b(5) BINARY.

1.12 Mapping for Exception Types

Each IDL exception type is mapped to the following two COBOL group items:

1. A COBOL group-item containing the layout of all the exception values within th
IDL module. Since IDL exceptions are allowed to have no members, but COBO
groups must have at least one item, IDL exceptions with no members map to 
COBOL groups with one member. This member is opaque to applications. Both
type and the name of this single member are implementation-specific.

2. A COBOL group item containing a unique identifier for the exception. The uniq
identifier for the exception will be in a string literal form.

1.12.1 Exception Mapping

If we consider the following IDL:
COBOL Mapping         Mapping for Arrays          June 1999 1-15



1

ne to 

ain 

ed 

ata 

es
interface example {
exception err {

long value;
};

};

It would be mapped to the following COBOL group items:

01 EXCEPTION-ERR.
03 VALUE PIC 9(10) BINARY.

01 EX-EXAMPLE-ERR PICTURE X(...)
VALUE "(UNIQUE EXCEPTION ID)".

1.13 Mapping for Attributes

IDL attribute declarations are mapped to a pair of simple accessing operations; o
get the value of the attribute and one to set it. 

Both the Dynamic COBOL mapping and the Type Specific COBOL mapping cont
specific examples of the mapping for attributes.

1.14 Pseudo Objects

There are no exceptions to the COBOL mapping rules. Pseudo-objects are mapp
from the pseudo-IDL according to the normal IDL mapping rules specified for 
COBOL.

1.15 Auxiliary Datatype Routines

1.15.1 Overview

The following auxiliary functions are provided to enable the manipulation of IDL d
types that are opaque within a COBOL context. 

• unbounded string auxiliary functions

• STRGET - extract string value into a PIC X(nn) area

• STRSET - create string using a PIC X(nn) value

• STRSETP - create string using a PIC X(nn) value and keep trailing spaces

• STRLEN - get length of a string 

• STRFREE - release string value memory

• unbounded wstring auxiliary functions

• WSTRGET - extract wstring value into a PIC G(nn) area

• WSTRSET - create wstring using a PIC G(nn) value

• WSTRSETP - create wstring using a PIC G(nn) value and keep trailing spac

• WSTRLEN - get length of a wstring 
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• WSTRFREE - release wstring value memory

• sequence auxiliary functions

• SEQALLOC - allocates data for a sequence

• SEQFREE - release sequence value memory

• SEQGET - extracts a specific element from a sequence

• SEQLEN - returns number of elements in sequence

• SEQMAX - returns maximum size of sequence

• SEQSET - stores a specific element into a sequence

• any auxiliary functions

• ANYGET - extracts data out of an any

• ANYSET - inserts data into an any

• ANYFREE - releases an any

• TYPEGET - returns type of data in the any

• TYPESET - sets type of data in any

• object auxiliary functions

• OBJTOSTR - convert an object reference into a stringified object reference

• STRTOOBJ - convert a stringified object reference into an object reference

• OBJDUP - duplicate an object reference

• OBJREL - release an object reference

The following subsections examine each of the above auxiliary functions in great
detail. They are in alphabetical order. Within each, the IDL notation for describing
operations is used as a meta notation for describing the syntax of each auxiliary 
function.

1.15.2 ANYGET

Summary

Extracts data out of an ANY.

ANYGET(IN  any Opaque-Any-Type,
 OUT <type> Any-Data)

Description

The ANYGET function provides access to the data in an ANY.   

• It is the programmer's responsibility to check the type of the any and supply a 
buffer large enough to receive the contents of the any.  

• The TYPEGET function is used to obtain the type of the ANY prior to calling 
ANYGET.

• If no type is set in the ANY, no type will be returned.
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01 EXAMPLE-MY-ANY POINTER.

01 WS-SHORT PICTURE 9(05) BINARY.
01 WS-LONG PICTURE 9(10) BINARY.
 . . .
PROCEDURE DIVISION

. . .
CALL "TYPEGET" USING EXAMPLE-MY-ANY

EXAMPLE-TYPE-CODE
EVALUATE TRUE

WHEN EXAMPLE-TYPE-SHORT
CALL "ANYGET" USING EXAMPLE-MY-ANY

WS-SHORT
DISPLAY "ANY SHORT IS " WS-SHORT

WHEN EXAMPLE-TYPE-LONG
CALL "ANYGET" USING EXAMPLE-MY-ANY

WS-LONG
DISPLAY "ANY LONG IS " WS-LONG

WHEN OTHER
DISPLAY "UNSUPPORTED TYPE IN ANY"

END-EVALUATE

1.15.3 ANYFREE

Summary

Releases storage within an ANY that is currently being used to hold a value.

ANYFREE(IN any Opaque-Any-Type)

Description

When ANYSET is called, it will allocate storage to hold the actual ANY value. Th
may then be released using a call to ANYFREE.

If the Any type is not currently set, the operation will be ignored.

Example

01 EXAMPLE-MY-ANY POINTER.
. . .

MOVE 12   TO WS-SHORT
SET EXAMPLE-TYPE-SHORT   TO TRUE
CALL "TYPESET" USING EXAMPLE-MY-ANY
 EXAMPLE-TYPE-CODE-LENGTH

EXAMPLE-TYPE-CODE
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CALL "ANYSET" USING EXAMPLE-MY-ANY
 WS-SHORT

. . .

CALL "ANYFREE" USING EXAMPLE-MY-ANY

1.15.4 ANYSET

Summary

Inserts data into an ANY.

ANYSET(IN any Opaque-Any-Type, 
   IN <type> Any-Data)

Description

The ANYSET function stores the supplied data into the ANY.   

• Users must first set the type of the ANY using TYPESET before calling ANYSE
If no previous type has been set, a CORBA exception will be raised.

• The storage within the ANY will be allocated by the ANYSET call, and will be 
owned by the ORB.

• Client side users will be responsible for calling ANYFREE to release an ANY ty
that they either send or receive once they have finished with it.

Example

01 EXAMPLE-MY-ANY POINTER.
. . .

MOVE 12   TO WS-SHORT
SET EXAMPLE-TYPE-SHORT   TO TRUE
CALL "TYPESET" USING EXAMPLE-MY-ANY

 EXAMPLE-TYPE-CODE-LENGTH
EXAMPLE-TYPE-CODE

CALL "ANYSET" USING EXAMPLE-MY-ANY
 WS-SHORT

1.15.5 OBJDUP

Summary

Duplicates an object reference.

OBJDUP(IN  pointer Object-Reference, 
   OUT pointer Duplicate-Object-Reference)
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Description

The OBJDUP auxiliary function creates another reference to the same object.

Example

01  OBJ-REF POINTER.
01  OBJ-DUP-REF POINTER

PROCEDURE DIVISION.

CALL "OBJDUP" USING OBJ-REF
  OBJ-DUP-REF

1.15.6 OBJREL

Summary

Releases an object reference.

OBJREL(IN pointer Object-Reference)

Description

The OBJREL auxiliary function disassociates the parameter from any object refer

Example

01  OBJ-REF               POINTER.

PROCEDURE DIVISION.
....
CALL "OBJREL" USING OBJ-REF

1.15.7 OBJTOSTR

Summary

Returns a stringified object reference from an object reference.

OBJTOSTR(IN  pointer Object-Reference, 
         OUT pointer Opaque-String-Type)

Description

The OBJTOSTR auxiliary function creates a stringified object reference from a va
object reference.

The returned string is an opaque string that is accessed using the STRGET auxil
routine.
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01  OBJ-REF               POINTER.
01  OBJECT-STRING         POINTER.

PROCEDURE DIVISION.
....
MOVE LENGTH OF OBJECT-STRING  TO  OBJECT-STRING-LEN
CALL "OBJTOSTR" USING OBJ-REF

OBJECT-STRING

1.15.8 SEQALLOC

Summary

Allocates control data for a sequence.

SEQALLOC(IN  unsigned long Initial-Maximum-Count,
    IN  <TYPE> Sequence-Typecode, 
     OUT sequence Opaque-Sequence)

Description

The SEQALLOC auxiliary function initializes the opaque sequence control area. 

• The maximum count will be set to the maximum value specified.

• For unbounded sequences, the maximum value should be set to the highest nu
value allowed in the field (ten numeric nines).

• The current length will be set to zero.

• The sequence typecode specifies the type of elements within the sequence.

Example

WORKING-STORAGE SECTION.
01 EXAMPLE-VECTOR-SEQUENCE.

03 VECTOR COMP-1.
03 VECTOR-SEQ POINTER.

01 SEQ-MAX-LENGTH PICTURE 9(10) BINARY.
. . . 

PROCEDURE DIVISION.
. . . 
MOVE 10 TO SEQ-MAX-TYPE
CALL "SEQALLOC" USING SEQ-MAX-LENGTH

    TYPE-FLOAT
    VECTOR-SEQ
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1.15.9 SEQFREE

Summary

Releases a sequence.

SEQFREE(IN sequence Opaque-Sequence-Type)

Description

The SEQFREE auxiliary function releases a sequence. 

• SEQFREE releases any types currently within the sequence.

• Nested sequences will also be handled.

• If the opaque sequence type has not been allocated, the SEQFREE will be ign

Example

WORKING-STORAGE SECTION.
01 EXAMPLE-VECTOR-SEQUENCE.

03 VECTOR COMP-1.
03 VECTOR-SEQ POINTER.

PROCEDURE DIVISION.
. . . 
CALL "SEQFREE" USING VECTOR-SEQ

1.15.10 SEQGET

Summary

Copies a specific element from a sequence into a data area.

SEQGET(IN  sequence Opaque-Sequence-Type, 
       IN  unsigned long Sequence-Element-Index,
       OUT <type> Sequence-Element) 

Description

The SEQGET auxiliary function provides access to a specific element of a seque

• The data is copied into the data area.

• If the opaque sequence type has not been allocated, a CORBA exception is ra

• If the requested element is greater than the current length of the sequence, a 
CORBA exception is raised.
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Example

WORKING-STORAGE SECTION.
01 EXAMPLE-VECTOR-SEQUENCE.

03 VECTOR COMP-1.
03 VECTOR-SEQ POINTER.

01 ELEMENT-INDEX PICTURE 9(10) BINARY.
01 SEQ-LENGTH PICTURE 9(10) BINARY.

. . . 

PROCEDURE DIVISION.
. . . 
CALL "SEQLEN" USING VECTOR-SEQ

  SEQ-LENGTH
PERFORM VARYING ELEMENT-INDEX FROM 1 BY 1

UNTIL ELEMENT-INDEX > SEQ-LENGTH
CALL "SEQGET" USING VECTOR-SEQ

  ELEMENT-INDEX
VECTOR

PERFORM PROCESS-SEQUENCE-ENTRY
END-PERFORM
. . .

1.15.11 SEQLEN

Summary

Retrieves the current number of elements within a sequence.

SEQLEN(IN  sequence Opaque-Sequence-Type, 
 OUT unsigned long Number-Of-Sequence-Elements)

Description

The SEQLEN auxiliary function returns the current number of elements that are w
a sequence.

If the opaque sequence type has not been allocated, a CORBA exception is raise

Example

WORKING-STORAGE SECTION.
01 EXAMPLE-VECTOR-SEQUENCE.

03 VECTOR COMP-1.
03 VECTOR-SEQ POINTER.

01 SEQ-LENGTH PICTURE 9(10) BINARY.
. . . 

PROCEDURE DIVISION.
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. . . 
CALL "SEQLEN" USING VECTOR-SEQ

 SEQ-LENGTH
. . .

1.15.12 SEQMAX

Summary

Retrieves the maximum number of elements a sequence is allowed to hold.

SEQMAX(IN  sequence Opaque-Sequence-Type,
       OUT unsigned long Max-Number-Of-Seq-Elements)

Description

The SEQMAX utility function obtains the maximum number of elements that may
stored within a sequence.

• If the opaque sequence type has not been allocated, a CORBA exception is ra

• If the opaque sequence is unbounded, the maximum integer value permitted in
long is returned.

Example

WORKING-STORAGE SECTION.
01 EXAMPLE-VECTOR-SEQUENCE.

03 VECTOR COMP-1.
03 VECTOR-SEQ POINTER.

01 SEQ-MAXIMUM PICTURE 9(10) BINARY.
. . . 

PROCEDURE DIVISION.
. . . 
CALL "SEQMAX" USING VECTOR-SEQ

  SEQ-MAXIMUM
. . .

1.15.13 SEQSET

Summary

Stores the data into the element number element of an unbounded sequence.

SEQSET(IN sequence Opaque-Sequence-Type,
       IN unsigned long ELEMENT_NUMBER
       IN <type> DATA)
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Description

The SEQSET auxiliary function stores the current contents of the data area into t
sequence. 

• If the requested element number already exists, it is overwritten.

• If the opaque sequence type has not been allocated, a CORBA exception is ra

• If the opaque sequence is bounded, and the requested element number is gre
than the current maximum size, a CORBA exception is raised.

Example

WORKING-STORAGE SECTION.
01 EXAMPLE-VECTOR-SEQUENCE.

03 VECTOR COMP-1.
03 VECTOR-SEQ POINTER.

01 ELEMENT-NUM PICTURE 9(10) BINARY.
01 SEQ-MAXIMUM PICTURE 9(10) BINARY.
. . . 

PROCEDURE DIVISION.
. . . 
CALL "SEQMAX" USING VECTOR-SEQ

  SEQ-MAXIMUM
PERFORM VARYING ELEMENT-NUM FROM 1 BY 1

            UNTIL ELEMENT-NUM > SEQ-MAXIMUM
PERFORM PROCESS-INIT-SEQUENCE-ENTRY
CALL "SEQSET" USING VECTOR-SEQ

  ELEMENT-NUM
  VECTOR

END-PERFORM
. . .

1.15.14 STRFREE

Summary

Releases a string.

STRFREE(IN string Opaque-String-Type)

Description

The STRFREE auxiliary function releases a string. 

If the opaque string type has not been allocated, the STRFREE will be ignored.
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Example

WORKING-STORAGE SECTION.
01 EXAMPLE-STRING POINTER.

PROCEDURE DIVISION.
. . . 
CALL "STRFREE" USING EXAMPLE-STRING

1.15.15 STRGET

Summary

Copies the contents of an opaque unbounded string type into a PIC X(n) data ite

STRGET(IN  string Opaque-String-Type, 
       IN  unsigned long Length-Of-Target-Area, 
       OUT <PIC X> Target-Area)

Description

This STRGET auxiliary function copies the characters in the opaque unbounded s
type to the specified target area.

• If the string does not contain enough characters to exactly fill the target, then it
be space padded. 

• NUL characters will never be copied.

• A CORBA exception is raised if the destination is not large enough to store all
string data.

• A CORBA exception is raised if the opaque string is not allocated.

Example

01 MY-STRING POINTER

01 DEST PICTURE X(64).
01 DEST-LEN PICTURE 9(10).

. . .

PROCEDURE DIVISION.
. . .
MOVE LENGTH OF DEST TO DEST-LEN
CALL "STRGET" USING MY-STRING, DEST-LEN, DEST
. . .
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1.15.16 STRLEN

Summary

Returns the actual length of an unbounded string.

STRLEN  (IN  string Opaque-String-Type, 
         OUT unsigned long Length)

Description

The STRLEN auxiliary function returns the number of characters in an unbounde
string. 

A CORBA exception is raised if the opaque string is not allocated.

Example

01 MY-STRING POINTER
01 LEN PICTURE 9(09) BINARY.

. . .

PROCEDURE DIVISION.
. . .
CALL "STRLEN" USING MY-STRING, LEN 

1.15.17 STRSET & STRSETP

Summary

Allocates storage for an unbounded string, sets the pointer to point to it, then set
value.

STRSET  (OUT string Opaque-String-Type, 
     IN  unsigned long Length-Of-Cobol-Text-Area, 
     IN  <PIC X> Cobol-Text)
STRSETP(OUT string Opaque-String-Type, 
     IN  unsigned long Length-Of-Cobol-Text-Area, 
     IN  <PIC X> Cobol-Text)

Description

The STRSET auxiliary function creates an unbounded string and copies all the 
characters from the COBOL text area into it.

If the text contains trailing spaces, these will not be copied to the dest string. 

The STRSETP version of this function is identical, except it will copy trailing spac
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Example
01 COBOL-TEXT PICTURE X(160).
01 COBOL-TEXT-LTH PICTURE 9(10) BINARY.

01 MY-STRING-TYPE POINTER
. . .

PROCEDURE DIVISION.
. . .
MOVE "TEXT-VALUE" TO COBOL-TEXT
MOVE LENGTH OF COBOL-TEXT TO COBOL-TEXT-LTH
CALL "STRSET" USING MY-STRING-TYPE, 

COBOL-TEXT-LTH, 
COBOL-TEXT

1.15.18 STRTOOBJ

Summary

Creates an object reference from a stringified object reference.

STRTOOBJ(IN  pointer Opaque-Stringified-Obj-Ref, 
         OUT pointer Object-Reference)

Description

The STRTOOBJ auxiliary function creates an object reference from a stringified ob
reference string.

• The values passed in is an opaque string type that is set up using the STRPU
auxiliary routine.

• If the string cannot be converted, the object reference is set to NULL.

Example

01  OBJECT-REF POINTER.
01  OBJECT-NAME POINTER.

PROCEDURE DIVISION.
CALL "STRTOOBJ" USING OBJECT-NAME

OBJECT-REF

IF  OBJECT-REF = NULL
DISPLAY "OBJSET CALL FAILED"
GO TO EXIT-PRG

END-IF
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1.15.19 TYPEGET

Summary

Extracts type name out of an ANY.

TYPEGET(IN  any Opaque-Any-Type,
     OUT <PIC X> <interface>-TYPE-CODE)

Description

The TYPEGET auxiliary function returns the type code of the ANY. 

• A Specific TYPE-CODE text area is generated for each interface within the ID
generated copy file.

• TYPEGET is used to get the type of the ANY so that the correct buffer is passe
the ANYGET function.

• If opaque any type has not been initialized, a CORBA exception will be raised

Example

01 EXAMPLE-MY-ANY POINTER.
01 WS-SHORT PICTURE 9(05) BINARY.
01 WS-LONG PICTURE 9(10) BINARY.
 . . .

 PROCEDURE DIVISION
 . . .

 CALL "TYPEGET" USING EXAMPLE-MY-ANY
 EXAMPLE-TYPE-CODE

 EVALUATE TRUE
 WHEN EXAMPLE-TYPE-SHORT
 CALL "ANYGET" USING EXAMPLE-MY-ANY

 WS-SHORT
 DISPLAY "SHORT FROM ANY IS " WS-SHORT

 WHEN EXAMPLE-TYPE-LONG
CALL "ANYGET" USING EXAMPLE-MY-ANY

WS-LONG
DISPLAY "LONG FROM ANY IS " WS-LONG

 WHEN OTHER
DISPLAY "UNSUPPORTED TYPE IN ANY"

END-EVALUATE
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1.15.20 TYPESET

Summary

Sets the type name of an ANY.

TYPEGET(INOUT any Opaque-Any-Type, 
     IN <PIC X> <interface>-TYPE-CODE

Description

The TYPESET auxiliary function, initializes the ANY, then sets the type of the AN
to the supplied typecode.

TYPESET must be done prior to calling ANYSET as ANYSET uses the current 
typecode information to insert the data into the ANY. If no previous TYPESET is 
done, a CORBA exception will be raised by ANYSET.

Example

01 EXAMPLE-MY-ANY POINTER.
01 WS-SHORT PICTURE S9(5) BINARY.

. . .

PROCEDURE DIVISION.
. . .
MOVE 12 TO WS-SHORT

 SET EXAMPLE-TYPE-SHORT TO TRUE
 CALL "TYPESET" USING EXAMPLE-MY-ANY

EXAMPLE-TYPE-CODE
 
 CALL "ANYSET" USING EXAMPLE-MY-ANY

 WS-SHORT
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Part II - Dynamic COBOL Mapping

This is the second of the three subsections, which describes the Dynamic COBO
mapping from the following viewpoints:

• Dynamic COBOL Mapping Fundamentals

• Common Auxiliary Functions

• Object Invocation Auxiliary Functions

• The Portable Object Adapter 

• COBOL Object Adapter Functions

1.16 Dynamic COBOL Mapping Fundamentals

1.16.1 Overview

The Dynamic COBOL mapping is designed to encapsulate the following CORBA 
fundamentals:

• Object Invocation from COBOL clients maps to the concepts within the CORB
Dynamic Invocation Interface (DII).

• The COBOL Object Adapter maps to the concepts within the CORBA Dynamic
Skeleton Interface (DSI).

1.16.2 Mapping for Interfaces

For the Dynamic COBOL Mapping, each IDL interface will be mapped to one or m
COBOL COPY files with the same name as the interface. They will contain all the
definitions required by the Dynamic COBOL mapping, and may be used in 
conjunction with auxiliary routines to enable COBOL applications to become a 
CORBA Object Implementation and to access other CORBA Object Implementati

1.16.3 Contents of the IDL Generated COBOL COPY File

The COBOL COPY file generated for each IDL interface will contain:

• A level 01 operation name block used to establish an operation name.

• A level 01 interface description block.

• One level 01 parameter block for each operation within the interface.

• An optional level 01 parameter block that holds all exception definitions.

1.16.3.1 The Operation Name block

The rules for the Operation Name block are as follows:
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• It will be a PIC X definition large enough to hold the largest operation name wit
the interface.

• It will be named using the following format:

01 <interface-name>-OPERATION.

• The contents may be set using level 88 values for each operation name within
interface, each of which will be named as follows:

 88 <interface-name>-<operation-name>
 VALUE "ACTUAL-OPERATION-NAME".

• Operation names will be specified as is.

• Attribute accessor names will be composed as follows:

_GET_<Attribute-Idl-Identifier>
_SET_<Attribute-Idl-Identifier>

1.16.3.2 Interface Description block

The Rules for the Interface Description Block are as follows: 

• The contents are totally opaque to application developers.

• The precise contents are implementation specific.

• It will be named using the following format:

 01 <interface-name>-INTERFACE.

• It is used in conjunction with the ORBREG call within a client or an object 
implementation prior to any other auxiliary function call for a specific interface.
(ORBREG is used to register the start of activity for the specific interface).

1.16.3.3 Operation Parameter blocks

The rules for the Operation Parameter Blocks are as follows:

• Each attribute and operation defined within the interface will result in a COBO
level 01 parameter block. 

• Each Operation Parameter Block will be named as follows:

 <interface-name>-<attribute/method-name>-ARGS.

• Each sub-item within the group, will be a mapping of the attribute or operation d
type to the appropriate local COBOL data type.

• Each sub-item label will be a mapping of the IDL name to a COBOL name.

• Return values will be mapped to a sub-item with the name "RESULT".
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1.16.3.4 Exception block

The rules for the Exception Block are as follows:

• If any exceptions are defined within the interface, an exception block will be 
defined.

• Each exception defined within the interface will result in a definition within the 
exception block. 

• The exception Block will be named as follows:

<interface-name>-USER-EXCEPTIONS.

1.16.3.5 Interface COPY file Example

Consider the following IDL:

interface example {
exception err {

long value;
};

read-only attribute short first;  // 1st attribute
read-only attribute long second;  // 2nd attribute

// IDL operations

void set(in short n, in short m, in long value);
long get(in short n, in short m);

};

This would result in the a COBOL COPY file called example being generated as 
follows:
*=======================================================
*   OPERATION AND ATTRIBUTE ARGUMENT BLOCKS
*=======================================================
*
*  ATTRIBUTE  : READONLY SHORT FIRST
*
 01 EXAMPLE-FIRST-ARGS.

03 RESULT PICTURE S9(05) BINARY.

*
*  ATTRIBUTE  : READONLY LONG SECOND
*
 01 EXAMPLE-SECOND-ARGS.

03 RESULT PICTURE S9(10) BINARY.

*
*  OPERATION  :  SET
*  PARAMETERS :  IN SHORT N
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*                IN SHORT M
*                IN LONG VALUE
*
 01 EXAMPLE-SET-ARGS.

03 N PICTURE S9(05) BINARY.
03 M PICTURE S9(05) BINARY.
03 IDL-VALUE PICTURE S9(10) BINARY.

*
*  OPERATION  :  GET
*  PARAMETERS :  IN SHORT N
*                IN SHORT M
*  RETURNS    :  LONG
*                  
 01 EXAMPLE-GET-ARGS.

03 N PICTURE S9(05) BINARY. 
03 M PICTURE S9(05) BINARY. 
03 RESULT PICTURE S9(10) BINARY. 

*=======================================================
*   EXAMPLE-OPERATION
*=======================================================
 01 EXAMPLE-OPERATION PICTURE X(12).

88 EXAMPLE-GET-FIRST VALUE "_GET_FIRST".
88 EXAMPLE-GET-SECOND VALUE "_GET_SECOND".
88 EXAMPLE-SET VALUE "SET".
88 EXAMPLE-GET VALUE "GET".

*=======================================================
*   EXAMPLE-INTERFACE
*
*   AN OPAQUE STRUCTURE CONTAINING INTERFACE DETAILS.
*   FOR THIS SPECIFIC ILLUSTRATION, IT HAS BEEN 
*   GENERATED IN A SEPARATE COPY FILE THAT IS INCLUDED
*   HERE.
*=======================================================
 COPY EXAMPLE1.
*=======================================================
*   EXAMPLE-USER-EXCEPTIONS
*=======================================================
01 EXAMPLE-USER-EXCEPTIONS.

03 EXCEPTION-ID POINTER.
03 D PICTURE 9(10) BINARY.
03 U PICTURE X(<MAX DATA SIZE>).
03 EXCEPTION-ERR REDEFINES U.

05 VALUE PICTURE 9(5) BINARY.

01 EX-EXAMPLE-ERR PICTURE X(...)
VALUE "(UNIQUE EXCEPTION ID)".
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1.16.4 The Global CORBA COPY File

The CORBA COBOL COPY file contains essential data definitions for the Dynam
COBOL Mapping. Users who use the Dynamic COBOL mapping are required to p
this copy file into their WORKING STORAGE section within their COBOL 
application.

The following data areas are defined within the CORBA COBOL COPY file.

1.16.4.1 COA-REQUEST-INFO

The COA-REQUEST-INFO structure is used within Dynamic COBOL Mapping 
dispatchers to hold information about the current invocation request. Details of ho
is populated, and how it should be used is described within the COBOL Object 
Adapter subsection below.

01 COA-REQUEST-INFO.
03 INTERFACE-NAME USAGE IS POINTER.
03 OPERATION-NAME USAGE IS POINTER.
03 PRINCIPAL USAGE IS POINTER.
03 TARGET USAGE IS POINTER.

The first three data items are unbounded CORBA character strings. The normal 
auxiliary STRGET routine for accessing unbounded string should be used to extr
the text into  PIC X(nn) buffers. TARGET is a COBOL object reference.

1.16.4.2 ORB-STATUS-INFORMATION

The ORB-STATUS-INFORMATION structure is used within Dynamic COBOL 
Mapping clients to hold the status of the last invocation made on either an object o
a local auxiliary function. Its usage is explained in more detail within the Client 
viewpoint subsection below.

01 ORB-STATUS-INFORMATION.
03 EXCEPTION-NUMBER PICTURE 9(9) BINARY.
03 COMPLETION-STATUS PICTURE 9(4) BINARY.

88 COMPLETION-STATUS-YES VALUE 0.
88 COMPLETION-STATUS-NO VALUE 1.
88 COMPLETION-STATUS-MAYBE VALUE 2.

03 FILLER PICTURE X(02).
03 EXCEPTION-TEXT USAGE IS POINTER.

For successful method invocations the EXCEPTION-NUMBER will be 0 and 
COMPLETION-STATUS-YES will be true. In all other instances, an appropriate 
numeric will be set to indicate a specific exception has been raised.

EXCEPTION-TEXT is a pointer to an unbounded string that describes any excep
The STRGET auxiliary routine is used to access the text.
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1.16.5 Mapping for Attributes

IDL attribute declarations are mapped to a pair of simple accessing operations; o
get the value of the attribute and one to set it. 

To illustrate this, within the context of the Dynamic COBOL Mapping, consider th
following specification:

interface foo {
attribute float balance;

};

The following code would be used within a Dynamic Mapping COBOL client to ge
and set the balance attribute that is specified in the IDL above:

*
* GET the Balance
*

SET FOO-GET-BALANCE TO TRUE
CALL "ORBEXEC" USING FOO-OBJ

FOO-OPERATION
FOO-GET-BALANCE-ARGS
FOO-USER-EXCEPTIONS

DISPLAY BALANCE IN FOO-GET-BALANCE-ARGS

*
* SET the Balance
*

MOVE 12.34 TO BALANCE
   IN FOO-SET-BALANCE-ARGS

SET FOO-SET-BALANCE TO TRUE
CALL "ORBEXEC" USING FOO-OBJ

FOO-OPERATION
FOO-SET-BALANCE-ARGS
FOO-USER-EXCEPTIONS

1.16.6 Mapping for Typedefs and Constants

Within the Dynamic COBOL Mapping, the parameter lists for IDL operations are 
unrolled back to their basic COBOL types within the IDL generated COBOL copy 
for an interface. As part of this process, the IDL constants and IDL typedefs will b
used to resolve the operation arguments as part of the unrolling process. 

There will be no direct output into the IDL generated COBOL copy file for either ID
Tyedefs or IDL Constants.

1.16.7 Mapping for Exception Types

All exception definitions for an interface are contained within one COBOL group it
in the IDL generated COBOL copy file:
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• The block is named:

 <interface>-USER-EXCEPTIONS

• It will contain an EXCEPTION-ID string that will hold a textual description of th
exception.

• It will contain the ordinal number of the current exception in a field called D.

• When a user exception is raised, this area will be filled in. 

• Exceptions are raised using the COAERR auxiliary routine.

• Each exception within the Exception Block is mapped using normal mapping ru
for exceptions.

A separate level 01 will also be defined for each exception to specify a unique 
exception identifier.

To illustrate the above rules, consider the following IDL:

interface example {
exception err {

 long value;
 };
 exception bad {
 short value;
 short code;
 string reason;
 };
 };

 It would be mapped to the following COBOL group items:

01 EXAMPLE-USER-EXCEPTIONS.
 03 EXCEPTION-ID POINTER.
 03 D PIC 9(9) BINARY.
 88 D-ERR VALUE 1.
 88 D-BAD VALUE 2.
 03 U PIC X(<MAX DATA SIZE>).
 03 EXCEPTION-ERR REDEFINES U.
 05 VALUE PIC 9(10) BINARY.
 03 EXCEPTION-BAD REDEFINES U.
 05 VALUE PIC 9(5) BINARY.
 05 CODE PIC 9(5) BINARY.
 05 REASON POINTER.
 
01 EX-EXAMPLE-ERR PICTURE X(...)

 VALUE "(UNIQUE EXCEPTION ID)".
 
01 EX-EXAMPLE-BAD PICTURE X(...)

 VALUE "(UNIQUE EXCEPTION ID)".
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Within the <Interface>-USER-EXCEPTIONS area:

• The EXCEPTION-ID is an unbounded string, so is accessed using STRGET.

• The value D will contain the ordinal value of the union element that contains th
exception data.

1.17 Common Auxiliary Routines

1.17.1 Overview

The following Dynamic Mapping auxiliary functions are used within either a client
invoking an object method, or within a COBOL object implementation:

• ORBREG - Registers a specific interface for use 

• ORBSTAT - Registers a status information buffer 

Each of the above is described in more detail below.

1.17.2 ORBREG

Summary

Registers an interface.

ORBREG( IN <COBOL STRUCT> Cobol-Interface-Description)

Description

Before any activity can occur for a specific interface, by either a client invoking it
methods, or within an object implementation initializing itself, the ORBREG call m
first be made to register the fact that activity for the interface is about to be starte

• The interface description registered by ORBREG is totally opaque and is gene
within the COBOL COPY file generated from the IDL. 

• The format for the name of the IDL generated interface description is 
<interface_name>-interface.

• It may be used to register more than one concurrent interface.

Example

COPY EXAMPLE.
COPY SAMPLE.
...

PROCEDURE DIVISION.
CALL "ORBREG" USING EXAMPLE-INTERFACE
CALL "ORBREG" USING SAMPLE-INTERFACE
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1.17.3 ORBSTAT

Summary

Registers a status information block.

ORBSTAT( IN <COBOL STRUCT> Status-Description)

Description

ORBSTAT is used to register the status information block, ORB-STATUS-
INFORMATION so that the status of successive calls is available.  

• ORB-STATUS-INFORMATION is defined in the standard CORBA copybook.

• Within it there is an EXCEPTION-NUMBER field that may be tested. When it is
zero, then the last auxiliary function call was successful.  

• The status of any auxiliary function call is available.  

• The ORBSTAT call should be made before any other auxiliary call.

• ORBSTAT is an optional call.  No status information will be available if ORBSTA
is not called.

• It is only called once per program.

Example

COPY CORBA.
COPY EXAMPLE.
...

PROCEDURE DIVISION.
CALL "ORBSTAT" USING ORB-STATUS-INFORMATION
CALL "ORBREG" USING EXAMPLE-INTERFACE
IF EXCEPTION-NUMBER NOT = 0

DISPLAY "ORBREG FAILED (" EXCEPTION-NUMBER ")"
END-IF

1.18 Object Invocation

1.18.1 Overview

For a client to invoke an object, it needs to make the following sequence of calls:

• Call ORBSTAT to register the ORB-STATUS-INFORMATION to enable the 
gathering of status information.

• Call ORBREG to register one or more specific interfaces.
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Each of the above calls are discussed in more details within the previous section. 
they have been completed, the ORBEXEC auxiliary function may be used to invo
operations.

The ORBEXEC auxiliary routine is described in more precise detail below.

Note – The use of the ORBREG and ORBEXEC calls are designed to map to the
CORBA DII interface.

1.18.2 ORBEXEC

Summary

Invokes an operation on the object.

ORBEXEC IN pointer Object-Reference, 
IN <PIC X> Operation-Name, 
INOUT <COBOL STRUCT> Operation-Argument-Buffer)
OUT <COBOL STRUCT> User-Exception-Block

Description

The ORBEXEC auxiliary function allows a COBOL client to invoke operations on t
object implementation represented by the supplied object reference.

• The operation-name will always be in a field, within the IDL generated COBOL
copy file for each interface, called: 

 <interface-name>-OPERATION

• The actual value within operation-name is requested by setting a level 88 for t
specific operation to true. The naming convention is as follows:

 <interface-name>-<operation-name>

• The operation-buffer, which is used to hold the operation's parameters, is gene
within the interface's IDL generated COBOL COPY file. Each operation within 
interface has its own specific parameter block that is named using the conven

<interface-name>-<operation-name>-ARGS

• The user-exception-block, which is used to return any user exceptions that are
raised, is generated within the interface's IDL generated COBOL COPY file. B
convention it is named:

<interface-name>-USER-EXCEPTIONS
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Example

01 EXAMPLE-OBJ POINTER.

COPY CORBA.
COPY EXAMPLE.

PROCEDURE DIVISION.
CALL "ORBSTAT" USING ORB-STATUS-INFORMATION
CALL "ORBREG" USING EXAMPLE-INTERFACE
....

* INVOKE "GET" OPERATION
SET EXAMPLE-GET TO TRUE
CALL "ORBEXEC" USING EXAMPLE-OBJ

EXAMPLE-OPERATION
EXAMPLE-GET-ARGS
EXAMPLE-USER-EXCEPTIONS

IF  EXCEPTION-NUMBER NOT = 0
DISPLAY "OPERATION FAILED (" EXCEPTION-NUMBER ")"
GO TO EXIT-PRG

END-IF
....

1.19 The COBOL Object Adapter

1.19.1 Overview

The following Object Implementation details are examined in more detail below:

• Initialization - Registering the interfaces that are to be supported.

• The Dispatcher - A single entry point that is called to handle all the interfaces 
registered during initialization.

• Operation Execution - How each operation obtains, and then returns its param

1.19.2 Object Implementation Initialization

When a server is started, it must make the following sequence of calls:

• Call ORBSTAT to register the ORB-STATUS-INFORMATION to enable the 
gathering of status information.

• A series of one or more calls to ORBREG to register the specific implementati
that the server supports.

• Call COAINIT to complete the initialization for the server. Note that once 
COAINIT has been called, it will not return until the server is terminating.

The following example illustrates the initialization of the above:
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IDENTIFICATION DIVISION.
PROGRAM-ID. SERVER.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 SERVER-NAME PICTURE X(07)
VALUE "SERVER".

01 SERVER-NAME-LEN PICTURE 9(09) BINARY
VALUE 6.

COPY CORBA.
COPY SAMPLE.
COPY EXAMPLE.

PROCEDURE DIVISION.

INIT.
CALL "ORBSTAT" USING ORB-STATUS-INFORMATION
CALL "ORBREG" USING EXAMPLE-INTERFACE
CALL "ORBREG" USING SAMPLE-INTERFACE
CALL "COAINIT" USING SERVER-NAME

SERVER-NAME-LEN
STOP RUN.

1.19.3 Object Implementation Dispatcher

Each Object Implementation is required to support an operation dispatcher: 

• The COBOL program that will be the dispatcher will:

• have its PROGRAM-ID set to DISPATCH (the name of its main entry point), 

• contain an entry point statement with DISPATCH in it (ENTRY "DISPATCH").

• It will be called once for each incoming operation invocation.

• It will initially obtain the details of the incoming request using the COAREQ 
function, then using those details, its will perform the requested function.

The following example illustrates this sequence:

IDENTIFICATION DIVISION.
PROGRAM-ID. DISPATCH.

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY CORBA.
COPY EXAMPLE.
....

PROCEDURE DIVISION.
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CALL "ORBSTAT" USING ORB-STATUS-INFORMATION.
CALL "ORBREQ" USING REQUEST-INFO.

CALL "STRGET" USING OPERATION-NAME
EXAMPLE-OPERATION-LENGTH
EXAMPLE-OPERATION.

EVALUATE TRUE
WHEN EXAMPLE-SET

PERFORM DO-EXAMPLE-SET
WHEN EXAMPLE-GET

PERFORM DO-EXAMPLE-GET
....

END-EVALUATE

In the above example, the Object Implementation only supports one interface, so
only uses the operation name to determine what needs to be done. In other case
where more than one interface is supported, it would also check the INTERFACE
NAME to determine which interface the incoming request is invoking the operation

1.19.4 Object Implementation Operations

Each implementation of an interface operation must initially make a COAGET cal
obtain all the parameters for the incoming request. The COAGET call will populate
parameter area that was generated within the interface's IDL generated COBOL 
file.

Once the implementation of an interface's operation has completed its processing
must make a COAPUT call to return all outgoing parameter values back to the ca
The COAPUT call will extract the outgoing parameters from the operation's param
area within the IDL generated COBOL copy file.

If an operation takes no parameters and has no return value COAGET and COAP
must still be called.

The following segment of code now illustrates the usage of COAGET and COAPU

DO-EXAMPLE-SET.
CALL "ORBGET" USING EXAMPLE-SET-ARGS
PERFORM SET-BUSINESS-LOGIC
CALL "ORBPUT" USING EXAMPLE-SET-ARGS

1.20 COBOL Object Adapter Functions

1.20.1 Overview

The following COBOL Object Adapter functions are used within a COBOL object 
implementation.

• Object Implementation - Initialization routines
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• COAINIT - Completes initialization of a COBOL Object Implementation.

• Object Implementation - Dispatcher routines

• COAREQ - Obtain details of current incoming request 

• COAGET - Get all the requests incoming parameters

• COAPUT - Return all the requests outgoing parameters

• COAERR - Raise a user exception

• OBJNEW - Creates a new Object Reference

Each of the above is listed alphabetically and described in more detail below.

1.20.2 COAERR

Summary

Raises a user exception.

COAERR(IN <USER-EXCEPTION-BUFFER> Exception-Buf)

Description

COAERR is used to raise the current user exception that is set within the except
buffer. 

• The programmer must first set the appropriate data in the exception buffer bef
making the call.

• The buffer is generated automatically from IDL within the interface's COBOL 
COPY file.

• The EXCEPTION-ID and D must be set within the buffer as well as the appropr
user data.

Example

Consider the following IDL:

interface foo {
 exception err {
 long value;
 };

long bar (in short n, out short m) 
raises err;

}

The complete COBOL operation parameter buffer looks like:

01 FOO-BAR-ARGS.
03  N PICTURE S9(05) BINARY.
03  M PICTURE S9(05) BINARY.
03  RESULTPICTURE S9(10) BINARY.
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The COBOL code to access this parameter list would be as follows:

FOO-BAR-IMPLEMENTATION.
...
IF CODE = ERR

MOVE CODE TO VALUE
SET D-ERR TO TRUE
MOVE LENGTH OF EX-FOO-ERR TO WS-LTH
CALL "STRSET" USING EXCEPTION-ID, 

WS-LTH, 
EX-FOO-ERR

CALL "COAERR" USING FOO-USER-EXCEPTIONS
ELSE

CALL "COAPUT" USING FOO-BAR-ARGS.
END-IF

1.20.3 COAGET

Summary

Populates an operation's parameter buffer with IN and INOUT values:

COAGET(INOUT <COBOL STRUCT> Cobol-Operation-Parameter-Buf)

Description

COAGET copies the incoming operation's argument values into the complete CO
operation parameter buffer, that is supplied. 

This buffer is generated automatically from IDL within the interface's COBOL COP
file.

• Each operation implementation must begin with a call to COAGET and end wi
call to COAPUT.  

• Only IN and INOUT values in this structure are populated by this call.

• If the operation takes no parameters and has no return value COAGET and 
COAPUT must still be called.

Example

Consider the following IDL:

interface foo {
long bar (in short n, out short m);

}

The complete COBOL operation parameter buffer looks like:

01 FOO-BAR-ARGS.
03  N PICTURE S9(05) BINARY.
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03  M PICTURE S9(05) BINARY.
03  RESULT PICTURE S9(10) BINARY.

The COBOL code to access this parameter list would be as follows:

FOO-BAR-IMPLEMENTATION.
CALL "COAGET" USING FOO-BAR-ARGS 

DISPLAY "N = " N
MOVE N   TO M
MOVE 216 TO RESULT

CALL "COAPUT" USING FOO-BAR-ARGS.

This returns the value of n back to the client in the m argument, and also sends the 
result back as the literal value 216.

1.20.4 COAINIT

Summary

Initializes a COBOL Object Implementation.

COAINIT(IN <PIC X> Server-ID, 
        IN unsigned long Server-ID-Length)

Description

COAINIT is used to notify the ORB that a server is ready to start receiving reque
The server identifier is passed into this call, along with its length.

• Note that the server identifier is case-sensitive.

• If no previous interface has been registered with an ORBREG call, the COAIN
call will raise a CORBA exception.

Example

01  SERVER-ID PIC X(7) VALUE "Example".
01  SERVER-ID-LTH PIC 9(9) BINARY.

. . .

PROCEDURE DIVISION.
. . .
MOVE LENGTH OF SERVER-ID TO SERVER-ID-LTH
CALL "COAINIT" USING SERVER-ID

SERVER-ID-LTH
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1.20.5 COAPUT

Summary

Takes INOUT, OUT and result values from an operation's parameter buffer and re
the values to the caller.

COAPUT(INOUT <COBOL STRUCT> Cobol-Operation-Parameter-Buf)

Description

COAPUT takes the outgoing argument values from the complete COBOL operati
parameter buffer, and returns them to the client that called the operation. 

This buffer is generated automatically from IDL within the interface's COBOL COP
file. 

Each operation implementation must begin with a call to COAGET and ends with
call to COAPUT.

• Only INOUT, OUT and the special RESULT OUT items are processed by this 

• The programmer must ensure that all INOUT, OUT and RESULT values are 
correctly allocated. Failure to do so will result in a CORBA exception being rai

• If the operation takes no parameters and has no return value, COAGET and 
COAPUT must still be called passing in a dummy data area.

• If a user exception has been raised, the COAPUT will do nothing.

Example

Consider the following IDL:

interface foo {
long bar (in short n, out short m);

}

The complete COBOL operation parameter buffer looks like:

01 FOO-BAR-ARGS.
03  N PICTURE S9(05) BINARY.
03  M PICTURE S9(05) BINARY.
03  RESULT PICTURE S9(10) BINARY.

The COBOL code to access this parameter list could looks like:

FOO-BAR-IMPLEMENTATION.
CALL "COAGET" USING FOO-BAR-ARGS 

DISPLAY "N = " N
MOVE N   TO M
MOVE 216 TO RESULT
COBOL Mapping         COBOL Object Adapter Functions          June 1999 1-47



1

 the  
 is 

opied 

before 
CALL "COAPUT" USING FOO-BAR-ARGS.

This returns the value of n back to the client in the m argument, and sends the result 
back as the literal value 216.

1.20.6 COAREQ

Summary

Obtain details of current inbound request within Implementation dispatcher.

COAREQ( IN <COBOL STRUCT> Request-Info)

Description

COAREQ is used within Object Implementation dispatchers to obtain the details of
current incoming invocation request. It will populate the following structure, which
defined in the CORBA COPY file, with the details. 

01 REQUEST-INFO.
03  INTERFACE-NAME POINTER.
03  OPERATION-NAME POINTER.
03  PRINCIPAL POINTER.
03  TARGET POINTER.

The first three data items are unbounded CORBA character strings. They can be c
into PIC X(n) buffers using the STRGET auxiliary function. The TARGET is a 
COBOL object reference for this operation invocation. 

• COAREQ must be called exactly once per operation invocation.  

• COAREQ must be called after a request has been dispatched to a server and 
any calls are made to access the parameter values.

Example

WORKING-STORAGE SECTION.
COPY CORBA.
...

PROCEDURE DIVISION.

ENTRY "DISPATCH
CALL "ORBSTAT" USING ORB-STATUS-INFORMATION.
CALL "ORBREQ" USING REQUEST-INFO.

CALL "STRGET" USING OPERATION-NAME
INTERFACE-OPERATION-LTH
INTERFACE-OPERATION.

...
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1.20.7 OBJNEW

Summary

Creates an Object Reference.

OBJNEW(IN  <PIC X> Server-Name,
       IN  <PIC X> Interface-Name,
...... IN  <PIC X> Object-Identifier,
       OUT pointer Object-Reference)

Description

The OBJNEW auxiliary function creates a unique object reference. It is specifical
designed for use by the Dynamic COBOL mapping.

• The "Server-Name" is a space terminated server identifier specified on the 
COAINIT function.

• The "Interface-Name" is a space terminated field containing the interface nam

• The "Object-Identifier" is a space terminated identifier for the object being crea
(for example, an account number for an account object being created by an ac
factory object).

Example

COPY EXAMPLE.
COPY CORBA.
...

01 OBJ-REF POINTER.
01 OBJECT-IDENTIFIER PICTURE X(25).
01 SERVER-NAME PICTURE X(12)

VALUE "SERVER".
02 INTERFACE-NAME PICTURE X(12)

VALUE "EXAMPLE".

PROCEDURE DIVISION.
....
MOVE "<unique value> TO OBJECT-IDENTIFIER
CALL "OBJNEW" USING SERVER-NAME

INTERFACE-NAME
OBJECT-IDENTIFIER
OBJECT-REF
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Part III - Type Specific COBOL Mapping

This section describes the Type Specific COBOL mapping from the following 
viewpoints:

• Type Specific COBOL Mapping - Fundamentals

• Type Specific COBOL Mapping - Object Invocation

• Type Specific COBOL Mapping - The Portable Object Adapter 

The syntax used within this section generally conforms to the ANSI 85 COBOL 
standard, as defined within ANSI X3.23-1985 / ISO 1989-1985.

1.21 Type Specific COBOL Mapping - Fundamentals

1.21.1 Memory Management

The standard auxiliary functions MEMALLOC and MEMFREE should be used to 
allocate and free storage for dynamic data types. The following two subsections 
describe these functions.

1.21.2 MEMALLOC

Summary

Allocates memory.

MEMALLOC( IN  unsigned long Length-Required, 
     OUT pointer Pointer)

Description

MEMALLOC is used to allocate memory at runtime from the program heap. 

• The length of the memory is specified. 

• If the function succeeds in allocating the requested number of bytes, then the 
pointer is set to point to the start of this memory. 

• If the function fails, the pointer will contain the NULL value. 

Example

01 PTR POINTER.
01 LEN PIC 9(10) BINARY VALUE IS 32.

...

CALL "MEMALLOC" USING LEN, PTR 
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1.21.3 MEMFREE

Summary

Free memory.

MEMFREE(IN pointer Pointer )

Description

MEMFREE is used to release dynamically allocated memory, via a pointer that w
originally obtained using MEMALLOC.

Care should be taken not to attempt to de-reference this pointer after freeing it, a
may result in a run-time error.

Example

01 PTR POINTER.
01 LEN PIC 9(10) BINARY VALUE IS 32.

CALL "MEMALLOC" USING LEN, PTR 

 . . . 

CALL "MEMFREE" USING PTR

For further details of these functions refer to their description within the "Mapping
IDL to COBOL " section.

1.21.4 Mapping for Attributes

IDL attribute declarations are mapped to a pair of simple accessing operations; o
get the value of the attribute and one to set it. 

To illustrate this, within the context of the Type Specific Mapping, consider the 
following specification:

interface foo {
attribute float balance;

};

The following code would be used within a CORBA COBOL client to get and set 
balance attribute that is specified in the IDL above:

CALL "FOO--GET-BALANCE" USING
A-FOO-OBJECT
A-CORBA-ENVIRONMENT

BALANCE-FLOAT

CALL "FOO--SET-BALANCE" USING
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A-FOO-OBJECT
BALANCE-FLOAT
A-CORBA-ENVIRONMENT

There are two hyphen characters ("--") used to separate the name of the interface
the words "get" or "set" in the names of the functions.

The functions can return standard exceptions but not user-defined ones since the 
of attribute declarations does not permit them.

1.21.5 Mapping for Typedefs

IDL Typedefs are mapped directly to COBOL Typedefs.

1.21.6 Mapping for Constants

The concept of constants does not exist within pure ANSI 85 COBOL. If the 
implementors COBOL compiler does not support this concept, then the IDL comp
will be responsible for the propagation of constants.

Constant identifiers can be referenced at any point in the user's code where a lite
that type is legal. In COBOL, these constants may be specified by using the COB
>>CONSTANT syntax.

The syntax is used to define a constant-name, which is a symbolic name represen
constant value assigned to it. The following is an example of this syntax:

>>CONSTANT MY-CONST-STRING IS "THIS IS A STRING VALUE".
>>CONSTANT MY-CONST-NUMBER IS 100.

1.21.7 Mapping for Exception Types

Each defined exception type is mapped to a COBOL group-item along with a con
name that provides a unique identifier for it. The unique identifier for the exceptio
will be in a string literal form. 

For example:

exception foo {
long a_supplied_value;

};

will produce the following COBOL declarations:

01 <SCOPE>-FOO IS TYPEDEF.
03 A-SUPPLIED-VALUE TYPE CORBA-LONG.

>>CONSTANT EX-FOO IS "<UNIQUE ID FOR EXCEPTION>".
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1.22 Type Specific COBOL Mapping - Object Invocation

1.22.1 Implicit Arguments to Operations

From the point of view of the COBOL programmer, all operations declared in an I
interface have implicit parameters in addition to the actual explicitly declared 
operation specific parameters. These are as follows:

• Each operation has an implicit CORBA-Object input parameter as the first 
parameter; this designates the object that is to process the request.

• Each operation has an implicit pointer to a CORBA-Environment output param
that permits the return of exception information. It is placed after any operation
specific arguments.

• If an operation in an IDL specification has a context specification, then there is
another implicit input parameter which is CORBA-Context. If present, this is pla
between the operation specific arguments and the CORBA-Environment param

• ANSI 85 COBOL does not support a RETURNING clause, so any return value
will be handled as an out parameter and placed at the end of the argument list
CORBA-Environment.

Given the following IDL declaration of an operation:

interface example1
{

float op1(
in short arg1,
in long arg2

);
};

The following COBOL call should be used:

CALL "EXAMPLE1-OP1" USING
A-CORBA-OBJECT
A-CORBA-SHORT
A-CORBA-LONG
A-CORBA-ENVIRONMENT
A-CORBA-FLOAT

1.22.2 Argument passing Considerations

All parameters are passed BY REFERENCE.

1.22.2.1 in parameters

All types are passed directly.
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1.22.2.2 inout parameters

bounded and fixed length parameters

All basic types, fixed length structures and unions (regardless of whether they we
dynamically allocated or specified within WORKING STORAGE) are passed direc
(they do not need to change size in memory).

unbounded and variable length parameters

All types that may have a different size upon return are passed indirectly. Instead o
actual parameter being passed, a pointer to the parameter will be passed.

When there is a type whose length may change in size, some special consideratio
required. For example; suppose the user wants to pass in a 10 byte unbounded st
an inout parameter. To do this, the address of a storage area that is initially large
enough to hold the 10 characters is passed to the ORB. However, upon completi
the operation, the ORB may find that it has a 20 byte string to pass back to the c
To enable it to achieve this, the ORB will need to deallocate the area pointed to b
address it received, re-allocate a larger area, then place the larger value into the
larger storage area. This new address will then be passed back to the caller. 

For all variable length structures, unions and strings that may change in size:

• The caller must initially dynamically allocate storage using the MEMALLOC 
function and initialize it directly , or use an appropriate accessor function that w
dynamically allocate storage (COBOL-xxx-set, where xxx is the type being set

• The pointer to the inout parameter is passed.

• When the call has completed and the user has finished with the returned para
value, the caller is responsible for de-allocating the storage. This is done by ma
a call to the "MEMFREE" ORB function with the current address in the POINTE

1.22.2.3 out and return parameters

Bounded

The caller will initially pass the parameter area into which the out (or return) valu
to be placed upon return.

Unbounded

For all sequences, and variable length structures, unions and strings:

• The caller passes a POINTER.

• The ORB will allocate storage for the data type out or return value being retur
and then place its address into the pointer.

• The caller is responsible for releasing the returned storage when it is no longe
required by using a call to the "MEMFREE" ORB function to deallocate it.
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1.22.3 Summary of Argument/Result Passing

The following table is used to illustrate the parameter passing conventions used foin, 
inout, out, and return  parameters. Following the table is a key that explains the 
clauses used within the table.

Table 1-2 Parameter Passing Conventions

Data Type in parameter inout parameter out parameter Return result

short <type> <type> <type> <type>

long <type> <type> <type> <type>

long long <type> <type> <type> <type>

unsigned short <type> <type> <type> <type>

unsigned long <type> <type> <type> <type>

unsigned long long <type> <type> <type> <type>

float <type> <type> <type> <type>

double <type> <type> <type> <type>

long double <type> <type> <type> <type>

boolean <type> <type> <type> <type>

char <type> <type> <type> <type>

wchar <type> <type> <type> <type>

octet <type> <type> <type> <type>

enum <type> <type> <type> <type>

fixed <type> <type> <type> <type>

object <type> <type> <type> <type>

struct (fixed) <type> <type> <type> <type>

struct (variable) <type> ptr ptr ptr

union (fixed) <type> <type> <type> <type>

union (variable) <type> ptr ptr ptr

string (bounded) <text> <text> <text> <text>

string (unbounded) <string> <string> <string> <string>

wstring (bounded) <wtext> <wtext> <wtext> <wtext>

wstring 
(unbounded)

<wstring> <wstring> <wstring> <wstring>

sequence <type> ptr ptr ptr
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Table Key:

1.23 Memory Management

1.23.1 Summary of Parameter Storage Responsibilities

The following table is used to illustrate the storage responsibilities for in, inout, out, 
and return  parameters. Following the table is a key that explains the numerics us
within the table.

array (fixed) <type> <type> <type> <type>

array (variable) <type> ptr ptr ptr

any <type> ptr ptr ptr

Key Description

<type> Parameter is passed BY REFERENCE

ptr Pointer to parameter is passed BY REFERENCE

For inout, the pointer must be initialized prior to the call to point 
to the data type.

For out and return , the pointer does not have to be initialized 
before the call and will be passed into the call unintialized. The 
ORB will then initialize the pointer before control is returned to 
the caller.

<text> Fixed length COBOL text (not null terminated)

<string> Pointer to a variable length NULL terminated string

<wtext> COBOL wtext (not null terminated)

<wstring> Pointer to a variable length NULL terminated wstring

Table 1-3 Parameter Storage Responsibilities

Data Type in parameter inout parameter out parameter Return result

short 1 1 1 1

long 1 1 1 1

long long 1 1 1 1

unsigned short 1 1 1 1

unsigned long 1 1 1 1

Table 1-2 Parameter Passing Conventions
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unsigned long long 1 1 1 1

float 1 1 1 1

double 1 1 1 1

long double 1 1 1 1

boolean 1 1 1 1

char 1 1 1 1

wchar 1 1 1 1

octet 1 1 1 1

enum 1 1 1 1

fixed 1 1 1 1

object 2 2 2 2

struct (fixed) 1 1 1 1

struct (variable) 1 3 3 3

union (fixed) 1 1 1 1

union (variable) 1 3 3 3

string (bounded) 1 1 1 1

string (unbounded) 1 3 3 3

wstring (bounded) 1 1 1 1

wstring (unbounded) 1 3 3 3

sequence 1 3 3 3

array (fixed) 1 1 1 1

array (variable) 1 3 3 3

any 1 3 3 3

Case Description

1 Caller may choose to define data type in WORKING STORAGE 
or dynamically allocate it.

For inout parameters, the caller provides the initial value and the 
callee may change that value (but not the size of the storage area 
used to hold the value).

For out and return  parameters, the caller does not have to 
initialize it, only provide the storage required. The callee sets the 
actual value.

Table 1-3 Parameter Storage Responsibilities
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1.24 Handling Exceptions

On every call to an interface operation there are implicit parameters along with th
explicit parameters specified by the user. For further details, refer to Section 1.22
“Argument passing Considerations,” on page 1-53. One of the implicit parameters
the CORBA-Environment  parameter which is used to pass back exception 
information to the caller.

1.24.1 Passing Exception details back to the caller

The CORBA-Environment  type is partially opaque. The COBOL declaration will 
contain at least the following:

2 Caller defines CORBA-Object in WORKING STORAGE or 
within dynamic storage.

For inout  parameters, the caller passes an initial value. If the 
ORB wants to reassign the parameter, it will first call “CORBA-
Object-release” on the original input value. To continue to use 
the original object reference passed in as an inout, the caller 
must first duplicate the object reference by calling “CORBA-
Object-duplicate.”

The client is responsible for the release of ALL specific out and 
return object references. Release of all object references 
embedded in other out and return structures is performed 
automatically as a result of calling “CORBA-free.” To explicitly 
release a specific object reference that is not contained within 
some other structure, the user should use an explicit call to 
“CORBA-Object-release.”

3 For inout  parameters, the caller provides a POINTER that points 
to dynamically allocated storage. The storage is dynamically 
allocated by a call to “CORBA-alloc.”

The ORB may deallocate the storage and reallocate a 
larger/smaller storage area, then return that to the caller.

For out and return  parameters, the caller provides an unitialized 
pointer. The ORB will return the address of dynamically 
allocated storage containing the out or return value within the 
pointer.

In all cases, the ORB is not allowed to return a null pointer. 
Also, the caller is always responsible for releasing storage. This 
is done by using a call to “CORBA-free.”
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01 CORBA-EXCEPTION-TYPE IS TYPEDEF TYPE CORBA-ENUM.
88 CORBA-NO-EXCEPTION VALUE 0.
88 CORBA-USER-EXCEPTION VALUE 1.
88 CORBA-SYSTEM-EXCEPTION VALUE 2.

01 CORBA-ENVIRONMENT IS TYPEDEF.
03 MAJOR TYPE CORBA-EXCEPTION-TYPE.
...

When a user has returned from a call to an object, the major  field within the call’s 
environment  parameter will have been set to indicate whether the call complete
successfully or not. It will be set to one of the valid types permitted within the fiel
CORBA-no-exception , CORBA-user-exception , or CORBA-system-
exception . If the value is one of the last two, then any exception parameters 
signalled by the object can be accessed.

1.24.2 Exception Handling Functions

The following functions are defined for handling exception information within the CORBA-

Environment  structure.

1.24.2.1 CORBA-exception-set

CORBA-exception-set  allows a method implementation to raise an exception. 
The a-CORBA-environment  parameter is the environment parameter passed in
the method. The caller must supply a value for the exception-type parameter. 

CALL "CORBA-EXCEPTION-SET" USING
A-CORBA-ENVIRONMENT
A-CORBA-EXCEPTION-TYPE
A-CORBA-REPOS-ID-STRING
A-PARAM

The value of the exception-type parameter constrains the other parameters in the call as fo

• If the parameter has the value CORBA-NO-EXCEPTION, this is a normal outcome 
to the operation. In this case, both repos-id-string  and param  must be 
NULL. Note that it is not necessary to invoke CORBA-exception-set  to 
indicate a normal outcome; it is the default behavior if the method simply retur

• For any other value, it specifies either a user-defined or system exception. The 
repos_id  parameter is the repository ID representing the exception type. If th
exception is declared to have members, the param  parameter must be the exception
group item containing the parameters according to the COBOL language mapp
If the exception takes no parameters, param  must be NULL.

If the CORBA-Environment  argument to CORBA-exception-set  already has an 
exception set in it, that exception is properly freed before the new exception 
information is set.
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1.24.2.2 CORBA-exception-id

CORBA-exception-id  returns a pointer to the character string identifying the 
exception. The character string contains the repository ID for the exception. If invo
on an environment  that identifies a non-exception, a NULL pointer is returned. 
Note that ownership of the returned pointer does not transfer to the caller; instead
pointer remains valid until CORBA-exception-free()  is called.

CALL "CORBA-EXCEPTION-ID" USING
A-CORBA-ENVIRONMENT

A-POINTER

1.24.2.3 CORBA-exception-value

CORBA-exception-value  returns a pointer to the structure corresponding to th
exception. If invoked on an environment  which identifies a non-exception, a NULL
pointer is returned. Note that ownership of the returned pointer does not transfer t
caller; instead, the pointer remains valid until CORBA-exception-free() is 
called.

CALL "CORBA-EXCEPTION-VALUE" USING
A-CORBA-ENVIRONMENT

A-POINTER

1.24.2.4 CORBA-exception-free

CORBA-exception-free  returns any storage that was allocated in the construct
of the environment exception. It is permissible to invoke this regardless of the
value of the IDL-major field.

CALL "CORBA-EXCEPTION-FREE" USING
A-CORBA-ENVIRONMENT

1.24.2.5 CORBA-exception-as-any

CORBA-exception-as-any()  returns a pointer to a CORBA-any containing the 
exception. This allows a COBOL application to deal with exceptions for which it h
no static (compile-time) information. If invoked on a CORBA-Environment  which 
identifies a non-exception, a null pointer is returned. Note that ownership of the 
returned pointer does not transfer to the caller; instead, the pointer remains valid 
CORBA-exception-free() is called.

CALL "CORBA-EXCEPTION-AS-ANY" USING
A-CORBA-ENVIRONMENT
A-CORBA-ANY-RTN
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1.24.3 Example of How to Handle the CORBA-Exception Parameter

The following example is a segment of a COBOL application that illustrates how 
Environment functions described above may be used within a COBOL application
handle an exception.

For the following IDL definition:

interface MyInterface {
exception example1{long reason, ...};
exception example2(...);

void MyOperation(long argument1)
raises(example1, example2, ...);

...
}

The following would be generated:

01 MYINTERFACE IS TYPEDEF TYPE CORBA-OBJECT.

01 MYINTERFACE-EXAMPLE1 IS TYPEDEF.
03 REASON TYPE CORBA-LONG
03 ...

>>CONSTANT EX-EXAMPLE1 IS "<UNIQUE EXAMPLE1 IDENTIFIER>".

01 MYINTERFACE-EXAMPLE2 IS TYPEDEF.
03 ...

>>CONSTANT EX-EXAMPLE2 IS "<UNIQUE EXAMPLE2 IDENTIFIER>".

The following code checks for exceptions and handles them.

WORKING-STORAGE SECTION.
01 MYINTERFACE-OBJECT TYPE MYINTERFACE
01 EV TYPE CORBA-ENVIRONMENT.
01 ARGUMENT1 TYPE CORBA-LONG
01 WS-EXCEPTION-PTR POINTER.

01 WS-EXAMPLE1-PTR POINTER.
...

LINKAGE SECTION.
01 LS-EXCEPTION TYPE CORBA-EXCEPTION-ID.
01 LS-EXAMPLE1 TYPE MYINTERFACE-EXAMPLE1.

...

PROCEDURE DIVISION.
...
CALL "MYINTERFACE-MYOPERATION" USING

MYINTERFACE-OBJECT
ARGUMENT1
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EV
EVALUATE MAJOR IN EV

MM WHEN CORBA-NO-EXCEPTION
CONTINUE

WHEN CORBA-USER-EXCEPTION
CALL "CORBA-EXCEPTION-ID" USING EV

 MWS-EXCEPTION-PTR

SET ADDRESS OF LS-EXCEPTION
 TO WS-EXCEPTION-PTR

EVALUATE LS-EXCEPTION
WHEN EX-EXAMPLE1
 CALL "CORBA-EXCEPTION-VALUE" USING EV

WS-EXAMPLE1-PTR
 SET ADDRESS OF LS-EXAMPLE1

MM TO WS-EXAMPLE1-PTR
 DISPLAY "XXXX CALL FAILED : "

"EXAMPLE1 EXCEPTION RAISED - "
"REASON CODE = "
REASON IN LS-EXAMPLE1

WHEN EX-EXAMPLE2
....

END-EVALUATE
CALL "CORBA-EXCEPTION-FREE" USING EV

WHEN CORBA-SYSTEM-EXCEPTION
...
CALL "CORBA-EXCEPTION-FREE" USING EV

END-EVALUATE
CALL "CORBA-EXCEPTION-FREE" USING EV

1.25 Type Specific COBOL Server Mapping

This section describes the details of the OMG IDL-to-COBOL language mapping 
apply specifically to the Portable Object Adapter, such as how the implementation
methods are connected to the skeleton.

1.25.1 Operation-specific Details

This section defines most of the details of binding methods to skeletons, naming 
parameter types, and parameter passing conventions. Generally, for those param
that are operation-specific, the method implementing the operation appears to rec
the same values that would be passed to the stubs.
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1.25.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the 
PortableServer::POA::ObjectId type, as object identifiers. However, because COB
programmers will often want to use strings as object identifiers, the COBOL mapp
provides several conversion functions that convert strings to ObjectId and vice-ve

CALL "PORTABLESERVER-OBJECTID-TO-STR" USING
A-PORTABLESERVER-OBJECTID
A-CORBA-ENVIRONMENT

    A-CORBA-STRING-RTN
....

CALL "PORTABLESERVER-OBJECTID-TO-WST" USING
A-PORTABLESERVER-OBJECTID
A-CORBA-ENVIRONMENT

    A-CORBA-WSTRING-RTN
....

CALL "PORTABLESERVER-STR-TO-OBJECTID" USING
A-CORBA-STRING
A-CORBA-ENVIRONMENT

A-PORTABLESERVER-OBJECTID-RTN
....

CALL "PORTABLESERVER-WST-TO-OBJECTID" USING
A-CORBA-WSTRING
A-CORBA-ENVIRONMENT

A-PORTABLESERVER-OBJECTID-RTN
....

These functions follow the normal COBOL mapping rules for parameter passing a
memory management.

If conversion of an ObjectId to a string would result in illegal characters in the str
(such as a NUL), the first two functions raise the CORBA-BAD-PARAM exception.

1.25.3 Mapping for PortableServer::ServantManager::Cookie

Since PortableServer::ServantManager::Cookie  is an IDL native type, its type 
must be specified by each language mapping. In COBOL, Cookie maps to pointe

01 COOKIE IS TYPEDEF USAGE POINTER

For the COBOL mapping of the PortableServer::ServantLocator::
preinvoke()  operation, the Cookie parameter maps to a pointer to a Cookie, w
for the postinvoke() operation, it is passed as a Cookie:

CALL "PORTABLESRV-SERVLOC-PREINVOKE" USING
A-PORTABLESERVER-OBJECTID-
A-PORTABLESERVER-POA
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A-CORBA-IDENTIFIER
A-COOKIE

...
CALL "PORTABLESRV-SERVLOC-POSTINVOKE" USING

A-PORTABLESERVER-OBJECTID
A-PORTABLESERVER-POA
A-CORBA-IDENTIFIER
A-COOKIE
A-PORTABLESERVER-SERVANT

1.25.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In COB
a servant is composed of a data structure that holds the state of the object along 
collection of method functions that manipulate that state in order to implement th
CORBA object.

The PortableServer::Servant type maps into COBOL as follows:

01 PORTABLESERVER-SERVANT IS TYPEDEF USAGE POINTER

Associated with a servant is a table of pointers to method functions. This table is c
an entry point vector, or EPV. The EPV has the same name as the servant type w
epv" appended . The EPV for PortableServer-Servant is defined as follows:

01 PORTABLESERVER-SERVANTBASE-EPV IS TYPEDEF.
03 PRIVATE USAGE POINTER.
03 FINALIZE USAGE PROCEDURE-POINTER.
03 DEFAULT-POA USAGE PROCEDURE-POINTER.

* THE SIGNATURES FOR THE FUNCTIONS ARE AS FOLLOWS
CALL "FINALIZE" USING

A-PORTABLESERVER-SERVANT
A-CORBA-ENVIRONMENT

CALL "DEFAULT-POA" USING
A-PORTABLESERVER-SERVANT
A-CORBA-ENVIRONMENT

    A-PORTABLESERVER-POA

The PortableServer-ServantBase-epv "private" member, which is opaque to 
applications, is provided to allow ORB implementations to associate data with ea
ServantBase EPV. Since it is expected that EPVs will be shared among multiple 
servants, this member is not suitable for per-servant data. The second member is
pointer to the finalization function for the servant, which is invoked when the serv
is etherealized. The other function pointers correspond to the usual Servant opera

The actual PortableServer-ServantBase structure combines an EPV with per-serv
data, as shown below:
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*   (VEPV IS A POINTER TO THE EPV)
01 PORTABLESERVER-SERVANTBASE-VEPV IS TYPEDEF POINTER.

01 PORTABLESERVER-SERVANTBASE IS TYPEDEF.
03 PRIVATE USAGE POINTER.
03 VEPV TYPE PORTABLESERVER-SERVANTBASE-VEPV.

The first member is a pointer that points to data specific to each ORB implementa
This member, which allows ORB implementations to keep per-servant data, is op
to applications. The second member is a pointer to a pointer to a PortableServer
ServantBase-epv. The reason for the double level of indirection is that servants fo
derived classes contain multiple EPV pointers, one for each base interface as we
one for the interface itself. (This is explained further in the next section). The nam
the second member, "vepv," is standardized to allow portable access through it.

1.25.5 Interface Skeletons

All COBOL skeletons for IDL interfaces have essentially the same structure as 
ServantBase, with the exception that the second member has a type that allows a
to all EPVs for the servant, including those for base interfaces as well as for the 
derived interface.

For example, consider the following IDL interface:

// IDL
interface Counter {

long add(in long val);
};

The servant skeleton generated by the IDL compiler for this interface appears as
follows (the type of the second member is defined further below):

01 POA-COUNTER IS TYPEDEF.
03 PRIVATE USAGE POINTER.
03 VEPV TYPE POA-COUNTER-VEPV.

As with PortableServer-ServantBase, the name of the second member is standar
to "vepv" for portability. 

The EPV generated for the skeleton is a bit more interesting. For the Counter inte
defined above, it appears as follows:

01 POA-COUNTER-EPV IS TYPEDEF.
03 PRIVATE USAGE POINTER.
03 ADD USAGE PROCEDURE-POINTER.

Since all servants are effectively derived from PortableServer-ServantBase, the 
complete set of entry points has to include EPVs for both PortableServer-Servant
and for Counter itself:
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01 POA-COUNTER-VEPV IS TYPEDEF.
03 BASE-EPV USAGE POINTER.
03 COUNTER-EPV USAGE POINTER.

The first member of the POA-Counter-vepv struct is a pointer to the PortableServ
ServantBase EPV. To ensure portability of initialization and access code, this mem
is always named "base-epv." It must always be the first member. The second me
is a pointer to a POA-Counter-epv.

The pointers to EPVs in the VEPV structure are in the order that the IDL interfac
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the
most-derived interface. The base of this hierarchy, as far as servants are concern
always PortableServer-ServantBase. For example, consider the following complic
interface hierarchy:

// IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : B, C {};
interface F {};
interface G : E, F {

void foo();
};

The VEPV structure for interface G shall be generated as follows:

* COBOL
01 POA-G-EPV IS TYPEDEF.

03 PRIVATE USAGE POINTER.
03 FOO USAGE PROCEDURE-POINTER.

01 POA-G-VEPV IS TYPEDEF.
03 BASE-EPV USAGE POINTER.
03 A-EPV USAGE POINTER.
03 B-EPV USAGE POINTER.
03 C-EPV USAGE POINTER.
03 D-EPV USAGE POINTER.
03 E-EPV USAGE POINTER.
03 F-EPV USAGE POINTER.
03 G-EPV USAGE POINTER.

Note that each member other than the "base-epv" member is named by appendin
epv" to the interface name whose EPV the member points to. These names are 
standardized to allow for portable access to these items.
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1.25.6 Servant Structure Initialization

Each servant requires initialization and etherealization, or finalization, functions. F
PortableServer-ServantBase, the ORB implementation shall provide the following
functions:

CALL "PORTABLESERVER-SERVANTBASEINIT" USING
PORTABLESERVER-SERVANT
CORBA-ENVIRONMENT

CALL "PORTABLESERVER-SERVANTBASEFINI" USING
PORTABLESERVER-SERVANT
CORBA-ENVIRONMENT

These functions are named by appending "Init" and "Fini" to the name of the serv
respectively. 

The first argument to the init function shall be a valid PortableServer-Servant who
"vepv" member has already been initialized to point to a VEPV structure. The init
function shall perform ORB-specific initialization of the PortableServer-ServantBa
and shall initialize the "finalize" struct member of the pointed-to PortableServer-
ServantBase-epv to point to the PortableServer-ServantBaseFini() function if the 
"finalize" member is NULL. If the "finalize" member is not NULL, it is presumed th
it has already been correctly initialized by the application, and is thus not modifie
Similarly, if the default-POA member of the PortableServer-ServantBase-epv struc
is NULL when the init function is called, its value is set to point to the default-PO
function, which returns an object reference to the root POA.

If a servant pointed to by the PortableServer-Servant passed to an init function h
NULL "vepv" member, or if the PortableServer-Servant argument itself is NULL, n
initialization of the servant is performed, and the CORBA::BAD_PARAM standard 
exception is raised via the CORBA-Environment parameter. This also applies to 
interface-specific init functions, which are described below.

The Fini function only cleans up ORB-specific private data. It is the default 
finalization function for servants. It does not make any assumptions about where
servant is allocated, such as assuming that the servant is heap-allocated and try
call MEMFREE on it. Applications are allowed to "override" the fini function for a 
given servant by initializing the PortableServer-ServantBase-epv "finalize" pointer
with a pointer to a finalization function made specifically for that servant; howeve
any such overriding function must always ensure that the PortableServer-
ServantBaseFini function is invoked for that servant as part of its implementation.
results of a finalization function failing to invoke PortableServer-ServantBaseFini 
implementation-specific, but may include memory leaks or faults that could crash
application.

If a servant passed to a fini function has a NULL "epv" member, or if the 
PortableServer-Servant argument itself is NULL, no finalization of the servant is 
performed, and the CORBA::BAD_PARAM standard exception is raised via the 
CORBA-Environment parameter. This also applies to interface-specific fini functio
which are described below.
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Normally, the PortableServer-ServantBaseInit and PortableServer-ServantBaseFi
functions are not invoked directly by applications, but rather by interface-specific 
initialization and finalization functions generated by an IDL compiler. For example
the init and fini functions generated for the Counter skeleton are defined as follow

IDENTIFICATION DIVISION.
PROGRAM ID. POA-COUNTER-INIT.
...

PROCEDURE DIVISION USING
A-POA-COUNTER
A-CORBA-ENVIRONMENT

*
* FIRST CALL IMMEDIATE BASE INTERFACE INIT
* FUNCTIONS IN THE LEFT-TO-RIGHT ORDER OF
* INHERITANCE
*

CALL "PORTABLESERVER-SERVANTBASEINIT" USING
A-POA-COUNTER
A-CORBA-ENVIRONMENT

*
* NOW PERFORM POA_COUNTER INITIALIZATION
*

...
 END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. POA-COUNTER-FINI.
...
PROCEDURE DIVISION USING

A-POA-COUNTER
A-CORBA-ENVIRONMENT

*
* FIRST PERFORM POA_COUNTER CLEANUP 
*

...
*
* THEN CALL IMMEDIATE BASE INTERFACE FINI
* FUNCTIONS IN THE RIGHT-TO-LEFT ORDER OF
* INHERITANCE
*

CALL "PORTABLESERVER-SERVANTBASEFINI" USING
A-POA-COUNTER
A-CORBA-ENVIRONMENT

END-PROGRAM.
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The address of a servant shall be passed to the init function before the servant is
allowed to be activated or registered with the POA in any way. The results of failin
properly initialize a servant via the appropriate init function before registering it o
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

1.25.7 Application Servants

It is expected that applications will create their own servant structures so that they
add their own servant-specific data members to store object state. For the Count
example shown above, an application servant would probably have a data memb
used to store the counter value:

01 APPSERVANT IS TYPEDEF.
03 BASE TYPE PAO-COUNTER.
03 VALUE TYPE CORBA-LONG.

The application might contain the following implementation of the Counter::add  
operation:

IDENTIFICATION DIVISION.
PROGRAM ID. APP-SERVANT-ADD.

...
LINKAGE SECTION.
01 A-APPSERVANTTYPE APPSERVANT.
...
PROCEDURE DIVISION USING

A-APPSERVANT
A-CORBA-LONG
A-CORBA-ENV

    A-CORBA-LONG-RTN
ADD A-CORBA-LONG TO VALUE IN A-APPSERVANT
MOVE VALUE IN A-APPSERVANT TO A-CORBA-LONG-RTN
EXIT PROGRAM

The application could initialize the servant dynamically as follows:

WORKING-STORAGE SECTION.
01 BASE-EPV TYPE PORTABLESERVER-SERVANTBASE-EPV.
01 COUNTER-EPV TYPE POA-COUNTER-EPV.
01 COUNTER-VEPV TYPE POA-COUNTER-VEPV.
01 MY-BASE TYPE POA-COUNTER.
01 MY-SERVANT TYPE APPSERVANT.

...
*  INITIALIZE BASE-EPV

SET PRIVATE IN BASE-EPV TO NULL
SET FINALIZE IN BASE-EPV TO NULL
SET DEFAULT-POA IN BASE-EPV

TO ENTRY "MY-DEFAULT-POA"
...
COBOL Mapping         Type Specific COBOL Server Mapping          June 1999 1-69



1

t the 
fter 

g 

 will 

tubs 
*  INITIALIZE COUNTER-EPV
SET PRIVATE IN COUNTER-EPV TO NULL
SET ADD IN COUNTER-EPV

TO ENTRY "APP-SERVANT-ADD"
...

*  INITIALIZE COUNTER-VEPV
SET BASE-EPV IN COUNTER-VEPV

TO ADDRESS OF BASE-EPV
SET COUNTER-EPV IN COUNTER-VEPV

TO ADDRESS OF COUNTER-EPV
...

*  INITIALIZE MY-BASE
SET PRIVATE IN MY-BASE TO NULL
SET VEPV IN MY-BASE

TO ADDRESS OF COUNTER-VEPV
...

*  INITIALIZE MY-SERVANT
SET BASE IN MY-SERVANT

TO ADDRESS OF MY-BASE
SET VALUE IN MY-SERVANT TO 0

Before registering or activating this servant, the application shall call:

CALL "POA-COUNTER-INIT" USING
MY-SERVANT
A-CORBA-ENVIRONMENT

If the application requires a special destruction function for my-servant, it shall se
value of the PortableServer-ServantBase-epv "finalize" member either before or a
calling POA-Counter-init():

SET FINALIZE IN BASE-EPV
TO ENTRY "MY-FINALIZER-FUNC"

Note that if the application statically initialized the "finalize" member before callin
the servant initialization function, explicit assignment to the "finalize" member as 
shown here is not necessary, since the PortableServer-ServantBaseInit() function
not modify it if it is non-NULL.

1.25.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the s
except for the first argument. If the following interface is defined in OMG IDL:

// IDL
interface example4 {

long op5(in long arg6);
};

A COBOL program for the op5 operation must have the following signature:
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IDENTIFICATION DIVISION.
PROGRAM ID. OP5.
...

PROCEDURE DIVISION USING
SERVANT
ARG6
ENV

 RTN
...

The Servant parameter (which is an instance of PortableServer-Servant) is the se
incarnating the CORBA object on which the request was invoked. The method ca
obtain the object reference for the target CORBA object by using the POA-Curren
object. The env  parameter is used for raising exceptions. Note that the names of 
servant  and env  parameters are standardized to allow the bodies of method 
functions to refer to them portably.

The method terminates successfully by executing an EXIT PROGRAM statement 
setting the declared operation return value. Prior to returning the result of a succe
invocation, the method code must assign legal values to all out and inout parame

The method terminates with an error by executing the CORBA-exception-set oper
(described in Section 1.24.2, “Exception Handling Functions,” on page 1-59) prior
executing an EXIT PROGRAM statement. When raising an exception, the method
code is not required to assign legal values to any out or inout parameters. Due to
restrictions in ANSI85 COBOL, it must return a legal function value.

1.25.9 Mapping of the Dynamic Skeleton Interface to COBOL

The Dynamic Skeleton Interface chapter of the CORBA specification contains general
information about the Dynamic Skeleton Interface (DSI), and its mapping to 
programming languages. Within this section, the following topics are covered:

• Mapping the ServerRequest Pseudo Object to COBOL

• Mapping the DynamicImplementationRoutine to COBOL

1.25.9.1 Mapping of the ServerRequest to COBOL

The pseudo IDL for the Dynamic Skeleton Interface's ServerRequest is as follow

module CORBA {
interface ServerRequest {

Identifier operation();
Context ctx();
void arguments(inout NVList parms);
void set_result(any value);
void set_exception(

exception_type major,
any value
   );
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The above ServerRequest pseudo IDL is mapped to COBOL as follows:

1.25.9.2 operation

This function returns the name of the operation being performed, as shown in the
operation's OMG IDL specification.

CALL "CORBA-SERVERREQUEST-OPERATION" USING
A-CORBA-SERVERREQUEST
A-CORBA-ENVIRONMENT

A-CORBA-IDENTIFIER

1.25.9.3 ctx

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation's O
IDL definition; for example attribute operations have none.

CALL "CORBA-SERVERREQUEST-CTX" USING
A-CORBA-SERVERREQUEST
A-CORBA-ENVIRONMENT

A-CORBA-CONTEXT

1.25.9.4 arguments

This function is used to retrieve parameters from the ServerRequest, and to find 
addresses used to pass pointers to result values to the ORB. It must always be ca
each Dynamic Implementation Routine (DIR), even when there are no parameter

The caller passes ownership of the parameters NVList to the ORB. Before this ro
is called, that NVList should be initialized with the TypeCodes and direction flags
each of the parameters to the operation being implemented: in , out , and inout  
parameters inclusive. When the call returns, the parameters NVList is still usable
the DIR, and all in and inout parameters will have been unmarshaled. Pointers to 
parameter values will at that point also be accessible through the parameters NV

The implementation routine will then process the call, producing any result values
the DIR does not need to report an exception, it will replace pointers to inout  values 
in parameters with the values to be returned, and assign parameters to out  values in 
that NVList appropriately as well. When the DIR returns, all the parameter memor
freed as appropriate, and the NVList itself is freed by the ORB.

CALL "CORBA-SERVERREQUEST-ARGUMENTS" USING
A-CORBA-SERVERREQUEST
A-CORBA-NVLIST

A-CORBA-ENVIRONMENT
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1.25.9.5 set-result

This function is used to report any result value for an operation. If the operation ha
result, it must either be called with a tk-void TypeCode stored in value, or not be ca
at all.

CALL "CORBA-SERVERREQUEST-SET-RESULT" USING
A-CORBA-SERVERREQUEST
A-CORBA-ANY

A-CORBA-ENVIRONMENT

1.25.9.6 set-exception

This function is used to report exceptions, both user and system, to the client wh
made the original invocation.

CALL "CORBA-SERVERREQUEST-SET-EXCEPTION" USING
A-CORBA-SERVERREQUEST
A-CORBA-EXCEPTION-TYPE
A-CORBA-ANY

A-CORBA-ENVIRONMENT

The parameters are as follows:

• The exception-type indicates whether it is a USER or a SYSTEM exception.

• the CORBA-any is the value of the exception (including the exception TypeCo

1.25.10 Mapping of Dynamic Implementation Routine to COBOL

A COBOL Dynamic Implementation Routine will be as follows:

PROCEDURE DIVISION USING
A-PORTABLESERVER-SERVANT
A-CORBA-SERVERREQUEST

Such a function will be invoked by the Portable Object Adapter when an invocatio
received on an object reference whose implementation has registered a dynamic
skeleton:

• Servant is the COBOL implementation object incarnating the CORBA object to
which the invocation is directed.

• Request is the ServerRequest used to access explicit parameters and report r
(and exceptions).

Unlike other COBOL object implementations, the DIR does not receive a CORBA
Environment parameter, and so the CORBA-exception-set API is not used. Instea
CORBA-ServerRequest-set-exception is used; this provides the TypeCode for the
exception to the ORB, so it does not need to consult the Interface Repository (or
on compiled stubs) to marshal the exception value.
COBOL Mapping         Type Specific COBOL Server Mapping          June 1999 1-73



1

ture 
 both 

5.6, 

he 

d to 
te the 

ived 

 of 
ad to 
To register a Dynamic Implementation Routine with a POA, the proper EPV struc
and servant must first be created. DSI servants are expected to supply EPVs for
PortableServer-ServantBase and for PortableServer-DynamicImpl, which is 
conceptually derived from PortableServer-ServantBase, as shown below.

01 PORTABLESERVER-DYNAMICIMPL-EPV IS TYPEDEF.
03 PRIVATE USAGE POINTER.
03 INVOKE TYPE PORTABLESERVER-DYNAMICIMPLROUTINE.
03 PRIMARY-INTERFACE USAGE PROCEDURE-POINTER.

*  (PRIMARY-INTERFACE SIGNATURE IS AS FOLLOWS ...)
CALL "PRIMARY-INTERFACE" USING

A-PORTABLESERVER-SERVANT
A-PORTABLESERVER-OBJECTID
A-PORTABLESERVER-POA
A-CORBA-ENVIRONMENT

A-CORBA-REPOSITORYID-RTN

01 PORTABLESERVER-DYNAMICIMPL-VEPV IS TYPEDEF.
03 BASE_EPV USAGE POINTER
03 PORTABLESERVER-DYNAMICIMPL-EPV USAGE POINTER.

01 PORTABLESERVER-DYNAMICIMPL IS TYPEDEF.
03 PRIVATE USAGE POINTER.
03 VEPV USAGE POINTER.

As for other servants, initialization and finalization functions for PortableServer-
DynamicImpl are also provided, and must be invoked as described in Section 1.2
“Servant Structure Initialization,” on page 1-67.

To properly initialize the EPVs, the application must provide implementations of t
invoke and the primary-interface functions required by the PortableServer-
DynamicImpl EPV. The invoke method, which is the DIR, receives requests issue
any CORBA object it represents and performs the processing necessary to execu
request.

The primary-interface method receives an ObjectId value and a POA as input 
parameters and returns a valid Interface Repository Id representing the most-der
interface for that oid.

It is expected that these methods will be only invoked by the POA, in the context
serving a CORBA request. Invoking these methods in other circumstances may le
unpredictable results.

An example of a DSI-based servant is shown below:

IDENTIFICATION DIVISION.
PROGRAM ID. MY-INVOKE.
...

PROCEDURE DIVISION USING
A-PORTABLESERVER-SERVANT
A-CORBA-SERVERREQUEST
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...
END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. MY-PRIM-INTF.
...

PROCEDURE DIVISION USING
A-PORTABLESERVER-SERVANT
A-PORTABLESERVER-OBJECTID
A-PORTABLESERVER-POA
A-CORBA-ENVIRONMENT
A-CORBA-REPOSITORYID-RTN

...
END-PROGRAM.

/* APPLICATION-SPECIFIC DSI SERVANT TYPE */
01 MYDSISERVANT IS TYPEDEF.

03 BASETYPE POA-DYNAMICIMPL.
....
<OTHER APPLICATION SPECIFIC DATA ITEMS>
....

01 BASE-EPV TYPE PORTABLESERVER-SERVANTBASE-EPV.
01 DYNAMICIMPL-EPV TYPE PORTABLESERVER-DYNAMICIMPL-EPV.
01 DYNAMICIMPL-VEPV TYPE PORTABLESERVER-DYNAMICIMPL-VEPV.
01 MY-SERVANT TYPE MYDSISERVANT.

...
*  INITIALIZE BASE-EPV

SET PRIVATE IN BASE-EPV TO NULL.
SET FINALIZE IN BASE-EPV TO NULL.
SET DEFAULT-POA IN BASE-EPV TO NULL.

...
*  INITIALIZE DYNAMICIMPL-EPV

SET PRIVATE IN DYNAMICIMPL-EPV TO NULL.
SET INVOKE IN DYNAMICIMPL-EPV

TO ENTRY "MY-INVOKE".
SET PRIMARY-INTERFACE IN DYNAMICIMPL-EPV

TO ENTRY "MY-PRIM-INTF".
...

*  INITIALIZE DYNAMICIMPL-VEPV
SET BASE-EPV IN DYNAMICIMPL-VEPV

TO ADDRESS OF BASE-EPV.
SET PORTABLESERVER-DYNAMICIMPL-EPV IN DYNAMICIMPL-VEPV

TO ADDRESS OF DYNAMICIMPL-EPV.
...

*  INITIALIZE MY-SERVANT
SET PRIVATE IN BASE IN MY-SERVANT TO NULL.
SET VEPV    IN BASE IN MY-SERVANT.

TO ADDRESS OF DYNAMICIMPL-VEPV.
....
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Registration of the my-servant data structure via the PortableServer-POA-set-ser
function on a suitably initialized POA makes the my-invoke DIR function available
handle DSI requests.

1.26 Extensions to COBOL 85

1.26.1 Overview

The following list of extensions to COBOL 85 are used within both the Dynamic 
COBOL Mapping, and also the Type Specific COBOL Mapping:

• Untyped pointers and pointer manipulation

• Floating point

The following list of extensions to COBOL 85 are only used within the Potable 
COBOL Mapping:

• Constants

• Typedefs

1.26.2 Untyped Pointers and Pointer Manipulation

1.26.2.1 Untyped Pointers

COBOL 85 does not define an untyped pointer data type. However, the following
syntax has been defined within the next major revision of COBOL 85 and has alre
been implemented in many current COBOL compilers.

[ USAGE IS ] POINTER

• ² No PICTURE clause allowed

1.26.2.2 Pointer Manipulation

COBOL 85 does not define any syntax for the manipulation of untyped pointers. 
However, the following syntax has been defined within the next major revision of 
COBOL 85 and has already been implemented in many current COBOL compiler

{ADDRESS OF IDENTIFIER}
SET {ADDRESS OF IDENTIFIER} TO {IDENTIFIER    }
    {IDENTIFIER           } {NULL     }

{NULLS    }

{IDENTIFIER   }
SET {IDENTIFIER{UP } }  BY {INTEGER   }

{DOWN} {LENGTH OF IDENTIFIER}
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1.26.3 Floating point

Currently COBOL 85 does not support floating point data types. There is an impl
use of floating point within this mapping. The OMG IDL floating-point types are 
specified as follows within the CORBA specification:

• float represents single precision floating point numbers

• double represents double-precision floating point numbers 

• long double represents long-double-precision floating point numbers

The above IDL types should be mapped to the native floating point type. The OR
will then be responsible for converting the native floating point types to the Comm
Data Representation (CDR) transfer syntax specified for the OMG IDL floating-po
types.

1.26.4 Constants

Currently COBOL 85 does not define any syntax for COBOL constants. The next
major revision of COBOL 85 defines the syntax below for this functionality.

To ensure that a complete mapping of CORBA IDL can be accomplished within a
COBOL application, it will be necessary to map CORBA IDL constants to some fo
of COBOL constant such as this.

>>CONSTANT CONSTANT-NAME IS LITERAL
INTEGER

1.26.5 Typedefs

Currently COBOL 85 does not define any syntax for COBOL typedefs. The next m
revision of COBOL 85 defines the syntax below for this functionality.

A typedef is defined using the IS TYPEDEF clause on a standard data entry. It 
identifies it as a typedef and will have no storage associated with it.

It is later used in conjunction with the TYPE clause to identify a user defined data
type. The following is an example of this syntax.

*   (DEFINES A TYPEDEF)
01 MY-MESSAGE-AREA-TYPE IS TYPEDEF.

02 WS-LENGTH USAGE PIC 9(4) COMP.
02 WS-TEXT USAGE PIC X(40).

.....
*   (USING TYPES IN STORAGE DEFINITIONS)
01 WS-MESSAGE1 TYPE MY-MSG-AREA-TYPE.
01 WS-MESSAGE2 TYPE MY-MSG-AREA-TYPE.

.....
*   (MANIPULATE DATA AS REQUIRED)
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PROCEDURE DIVISION.
.....
MOVE 12 TO WS-LENGTH IN WS-MESSAGE1.
MOVE MSG1 TO WS-TEXT   IN WS-MESSAGE1.
.....
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